Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry
To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety o...
Ausführliche Beschreibung
Autor*in: |
Okumura, Takeshi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. © COPYRIGHT 2015 Elsevier B.V. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of bioscience and bioengineering - Osaka, 1999, 120(2015), 3, Seite 340 |
---|---|
Übergeordnetes Werk: |
volume:120 ; year:2015 ; number:3 ; pages:340 |
Links: |
---|
DOI / URN: |
10.1016/j.jbiosc.2015.01.007 |
---|
Katalog-ID: |
OLC1965022901 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1965022901 | ||
003 | DE-627 | ||
005 | 20220216235505.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jbiosc.2015.01.007 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1965022901 | ||
035 | |a (DE-599)GBVOLC1965022901 | ||
035 | |a (PRQ)g1424-5e69a1a7daf2db8085c07129bcb9aa3f95076b26af9c58682edf158fdc510f0f0 | ||
035 | |a (KEY)0039398320150000120000300340efficientenrichmentofhighproducingrecombinantchine | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 540 |a 660 |q DNB |
084 | |a 42.00 |2 bkl | ||
084 | |a 58.30 |2 bkl | ||
084 | |a 48.00 |2 bkl | ||
100 | 1 | |a Okumura, Takeshi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC. | ||
540 | |a Nutzungsrecht: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. | ||
540 | |a © COPYRIGHT 2015 Elsevier B.V. | ||
650 | 4 | |a Fluorescein | |
650 | 4 | |a Monoclonal antibodies | |
650 | 4 | |a Ovarian cancer | |
700 | 1 | |a Masuda, Kenji |4 oth | |
700 | 1 | |a Watanabe, Kazuhiko |4 oth | |
700 | 1 | |a Miyadai, Kenji |4 oth | |
700 | 1 | |a Nonaka, Koichi |4 oth | |
700 | 1 | |a Yabuta, Masayuki |4 oth | |
700 | 1 | |a Omasa, Takeshi |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of bioscience and bioengineering |d Osaka, 1999 |g 120(2015), 3, Seite 340 |w (DE-627)265549817 |w (DE-600)1465387-4 |w (DE-576)074842005 |x 1389-1723 |7 nnns |
773 | 1 | 8 | |g volume:120 |g year:2015 |g number:3 |g pages:340 |
856 | 4 | 1 | |u http://dx.doi.org/10.1016/j.jbiosc.2015.01.007 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25683450 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-FOR | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 42.00 |q AVZ |
936 | b | k | |a 58.30 |q AVZ |
936 | b | k | |a 48.00 |q AVZ |
951 | |a AR | ||
952 | |d 120 |j 2015 |e 3 |h 340 |
author_variant |
t o to |
---|---|
matchkey_str |
article:13891723:2015----::fiinercmnohgpouigeobnncieeaseoayelfrool |
hierarchy_sort_str |
2015 |
bklnumber |
42.00 58.30 48.00 |
publishDate |
2015 |
allfields |
10.1016/j.jbiosc.2015.01.007 doi PQ20160617 (DE-627)OLC1965022901 (DE-599)GBVOLC1965022901 (PRQ)g1424-5e69a1a7daf2db8085c07129bcb9aa3f95076b26af9c58682edf158fdc510f0f0 (KEY)0039398320150000120000300340efficientenrichmentofhighproducingrecombinantchine DE-627 ger DE-627 rakwb eng 570 540 660 DNB 42.00 bkl 58.30 bkl 48.00 bkl Okumura, Takeshi verfasserin aut Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC. Nutzungsrecht: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. © COPYRIGHT 2015 Elsevier B.V. Fluorescein Monoclonal antibodies Ovarian cancer Masuda, Kenji oth Watanabe, Kazuhiko oth Miyadai, Kenji oth Nonaka, Koichi oth Yabuta, Masayuki oth Omasa, Takeshi oth Enthalten in Journal of bioscience and bioengineering Osaka, 1999 120(2015), 3, Seite 340 (DE-627)265549817 (DE-600)1465387-4 (DE-576)074842005 1389-1723 nnns volume:120 year:2015 number:3 pages:340 http://dx.doi.org/10.1016/j.jbiosc.2015.01.007 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25683450 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_70 42.00 AVZ 58.30 AVZ 48.00 AVZ AR 120 2015 3 340 |
spelling |
10.1016/j.jbiosc.2015.01.007 doi PQ20160617 (DE-627)OLC1965022901 (DE-599)GBVOLC1965022901 (PRQ)g1424-5e69a1a7daf2db8085c07129bcb9aa3f95076b26af9c58682edf158fdc510f0f0 (KEY)0039398320150000120000300340efficientenrichmentofhighproducingrecombinantchine DE-627 ger DE-627 rakwb eng 570 540 660 DNB 42.00 bkl 58.30 bkl 48.00 bkl Okumura, Takeshi verfasserin aut Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC. Nutzungsrecht: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. © COPYRIGHT 2015 Elsevier B.V. Fluorescein Monoclonal antibodies Ovarian cancer Masuda, Kenji oth Watanabe, Kazuhiko oth Miyadai, Kenji oth Nonaka, Koichi oth Yabuta, Masayuki oth Omasa, Takeshi oth Enthalten in Journal of bioscience and bioengineering Osaka, 1999 120(2015), 3, Seite 340 (DE-627)265549817 (DE-600)1465387-4 (DE-576)074842005 1389-1723 nnns volume:120 year:2015 number:3 pages:340 http://dx.doi.org/10.1016/j.jbiosc.2015.01.007 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25683450 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_70 42.00 AVZ 58.30 AVZ 48.00 AVZ AR 120 2015 3 340 |
allfields_unstemmed |
10.1016/j.jbiosc.2015.01.007 doi PQ20160617 (DE-627)OLC1965022901 (DE-599)GBVOLC1965022901 (PRQ)g1424-5e69a1a7daf2db8085c07129bcb9aa3f95076b26af9c58682edf158fdc510f0f0 (KEY)0039398320150000120000300340efficientenrichmentofhighproducingrecombinantchine DE-627 ger DE-627 rakwb eng 570 540 660 DNB 42.00 bkl 58.30 bkl 48.00 bkl Okumura, Takeshi verfasserin aut Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC. Nutzungsrecht: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. © COPYRIGHT 2015 Elsevier B.V. Fluorescein Monoclonal antibodies Ovarian cancer Masuda, Kenji oth Watanabe, Kazuhiko oth Miyadai, Kenji oth Nonaka, Koichi oth Yabuta, Masayuki oth Omasa, Takeshi oth Enthalten in Journal of bioscience and bioengineering Osaka, 1999 120(2015), 3, Seite 340 (DE-627)265549817 (DE-600)1465387-4 (DE-576)074842005 1389-1723 nnns volume:120 year:2015 number:3 pages:340 http://dx.doi.org/10.1016/j.jbiosc.2015.01.007 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25683450 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_70 42.00 AVZ 58.30 AVZ 48.00 AVZ AR 120 2015 3 340 |
allfieldsGer |
10.1016/j.jbiosc.2015.01.007 doi PQ20160617 (DE-627)OLC1965022901 (DE-599)GBVOLC1965022901 (PRQ)g1424-5e69a1a7daf2db8085c07129bcb9aa3f95076b26af9c58682edf158fdc510f0f0 (KEY)0039398320150000120000300340efficientenrichmentofhighproducingrecombinantchine DE-627 ger DE-627 rakwb eng 570 540 660 DNB 42.00 bkl 58.30 bkl 48.00 bkl Okumura, Takeshi verfasserin aut Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC. Nutzungsrecht: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. © COPYRIGHT 2015 Elsevier B.V. Fluorescein Monoclonal antibodies Ovarian cancer Masuda, Kenji oth Watanabe, Kazuhiko oth Miyadai, Kenji oth Nonaka, Koichi oth Yabuta, Masayuki oth Omasa, Takeshi oth Enthalten in Journal of bioscience and bioengineering Osaka, 1999 120(2015), 3, Seite 340 (DE-627)265549817 (DE-600)1465387-4 (DE-576)074842005 1389-1723 nnns volume:120 year:2015 number:3 pages:340 http://dx.doi.org/10.1016/j.jbiosc.2015.01.007 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25683450 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_70 42.00 AVZ 58.30 AVZ 48.00 AVZ AR 120 2015 3 340 |
allfieldsSound |
10.1016/j.jbiosc.2015.01.007 doi PQ20160617 (DE-627)OLC1965022901 (DE-599)GBVOLC1965022901 (PRQ)g1424-5e69a1a7daf2db8085c07129bcb9aa3f95076b26af9c58682edf158fdc510f0f0 (KEY)0039398320150000120000300340efficientenrichmentofhighproducingrecombinantchine DE-627 ger DE-627 rakwb eng 570 540 660 DNB 42.00 bkl 58.30 bkl 48.00 bkl Okumura, Takeshi verfasserin aut Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC. Nutzungsrecht: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved. © COPYRIGHT 2015 Elsevier B.V. Fluorescein Monoclonal antibodies Ovarian cancer Masuda, Kenji oth Watanabe, Kazuhiko oth Miyadai, Kenji oth Nonaka, Koichi oth Yabuta, Masayuki oth Omasa, Takeshi oth Enthalten in Journal of bioscience and bioengineering Osaka, 1999 120(2015), 3, Seite 340 (DE-627)265549817 (DE-600)1465387-4 (DE-576)074842005 1389-1723 nnns volume:120 year:2015 number:3 pages:340 http://dx.doi.org/10.1016/j.jbiosc.2015.01.007 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25683450 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_70 42.00 AVZ 58.30 AVZ 48.00 AVZ AR 120 2015 3 340 |
language |
English |
source |
Enthalten in Journal of bioscience and bioengineering 120(2015), 3, Seite 340 volume:120 year:2015 number:3 pages:340 |
sourceStr |
Enthalten in Journal of bioscience and bioengineering 120(2015), 3, Seite 340 volume:120 year:2015 number:3 pages:340 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fluorescein Monoclonal antibodies Ovarian cancer |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Journal of bioscience and bioengineering |
authorswithroles_txt_mv |
Okumura, Takeshi @@aut@@ Masuda, Kenji @@oth@@ Watanabe, Kazuhiko @@oth@@ Miyadai, Kenji @@oth@@ Nonaka, Koichi @@oth@@ Yabuta, Masayuki @@oth@@ Omasa, Takeshi @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
265549817 |
dewey-sort |
3570 |
id |
OLC1965022901 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1965022901</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216235505.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jbiosc.2015.01.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1965022901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1965022901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g1424-5e69a1a7daf2db8085c07129bcb9aa3f95076b26af9c58682edf158fdc510f0f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0039398320150000120000300340efficientenrichmentofhighproducingrecombinantchine</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Okumura, Takeshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">© COPYRIGHT 2015 Elsevier B.V.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescein</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monoclonal antibodies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ovarian cancer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masuda, Kenji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Watanabe, Kazuhiko</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miyadai, Kenji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nonaka, Koichi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yabuta, Masayuki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Omasa, Takeshi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of bioscience and bioengineering</subfield><subfield code="d">Osaka, 1999</subfield><subfield code="g">120(2015), 3, Seite 340</subfield><subfield code="w">(DE-627)265549817</subfield><subfield code="w">(DE-600)1465387-4</subfield><subfield code="w">(DE-576)074842005</subfield><subfield code="x">1389-1723</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:340</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.jbiosc.2015.01.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25683450</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">340</subfield></datafield></record></collection>
|
author |
Okumura, Takeshi |
spellingShingle |
Okumura, Takeshi ddc 570 bkl 42.00 bkl 58.30 bkl 48.00 misc Fluorescein misc Monoclonal antibodies misc Ovarian cancer Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry |
authorStr |
Okumura, Takeshi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)265549817 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1389-1723 |
topic_title |
570 540 660 DNB 42.00 bkl 58.30 bkl 48.00 bkl Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry Fluorescein Monoclonal antibodies Ovarian cancer |
topic |
ddc 570 bkl 42.00 bkl 58.30 bkl 48.00 misc Fluorescein misc Monoclonal antibodies misc Ovarian cancer |
topic_unstemmed |
ddc 570 bkl 42.00 bkl 58.30 bkl 48.00 misc Fluorescein misc Monoclonal antibodies misc Ovarian cancer |
topic_browse |
ddc 570 bkl 42.00 bkl 58.30 bkl 48.00 misc Fluorescein misc Monoclonal antibodies misc Ovarian cancer |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
k m km k w kw k m km k n kn m y my t o to |
hierarchy_parent_title |
Journal of bioscience and bioengineering |
hierarchy_parent_id |
265549817 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry 660 - Chemical engineering |
hierarchy_top_title |
Journal of bioscience and bioengineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)265549817 (DE-600)1465387-4 (DE-576)074842005 |
title |
Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry |
ctrlnum |
(DE-627)OLC1965022901 (DE-599)GBVOLC1965022901 (PRQ)g1424-5e69a1a7daf2db8085c07129bcb9aa3f95076b26af9c58682edf158fdc510f0f0 (KEY)0039398320150000120000300340efficientenrichmentofhighproducingrecombinantchine |
title_full |
Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry |
author_sort |
Okumura, Takeshi |
journal |
Journal of bioscience and bioengineering |
journalStr |
Journal of bioscience and bioengineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
340 |
author_browse |
Okumura, Takeshi |
container_volume |
120 |
class |
570 540 660 DNB 42.00 bkl 58.30 bkl 48.00 bkl |
format_se |
Aufsätze |
author-letter |
Okumura, Takeshi |
doi_str_mv |
10.1016/j.jbiosc.2015.01.007 |
dewey-full |
570 540 660 |
title_sort |
efficient enrichment of high-producing recombinant chinese hamster ovary cells for monoclonal antibody by flow cytometry |
title_auth |
Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry |
abstract |
To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC. |
abstractGer |
To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC. |
abstract_unstemmed |
To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR GBV_ILN_70 |
container_issue |
3 |
title_short |
Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry |
url |
http://dx.doi.org/10.1016/j.jbiosc.2015.01.007 http://www.ncbi.nlm.nih.gov/pubmed/25683450 |
remote_bool |
false |
author2 |
Masuda, Kenji Watanabe, Kazuhiko Miyadai, Kenji Nonaka, Koichi Yabuta, Masayuki Omasa, Takeshi |
author2Str |
Masuda, Kenji Watanabe, Kazuhiko Miyadai, Kenji Nonaka, Koichi Yabuta, Masayuki Omasa, Takeshi |
ppnlink |
265549817 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.jbiosc.2015.01.007 |
up_date |
2024-07-03T16:11:44.839Z |
_version_ |
1803574947183853568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1965022901</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216235505.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jbiosc.2015.01.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1965022901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1965022901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g1424-5e69a1a7daf2db8085c07129bcb9aa3f95076b26af9c58682edf158fdc510f0f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0039398320150000120000300340efficientenrichmentofhighproducingrecombinantchine</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">540</subfield><subfield code="a">660</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Okumura, Takeshi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient enrichment of high-producing recombinant Chinese hamster ovary cells for monoclonal antibody by flow cytometry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To screen a high-producing recombinant Chinese hamster ovary (CHO) cell from transfected cells is generally laborious and time-consuming. We developed an efficient enrichment strategy for high-producing cell screening using flow cytometry (FCM). A stable pool that had possibly shown a huge variety of monoclonal antibody (mAb) expression levels was prepared by transfection of an expression vector for mAb production to a CHO cell. To enrich high-producing cells derived from a stable pool stained with a fluorescent-labeled antibody that binds to mAb presented on the cell surface, we set the cell size and intracellular density gates based on forward scatter (FSC) and side scatter (SSC), and collected the brightest 5% of fluorescein isothiocyanate (FITC)-positive cells from each group by FCM. The final product concentration in a fed-batch culture of cells sorted without FSC and SSC gates was 1.2-1.3-times higher than that of unsorted cells, whereas that of cells gated by FSC and SSC was 3.4-4.7-fold higher than unsorted cells. Surprisingly, the fraction with the highest final product concentration indicated the smallest value of FSC and SSC, and the middle value of fluorescence intensity among all fractionated cells. Our results showed that our new screening strategy by FCM based on FSC and SSC gates could achieve an efficient enrichment of high-producing cells with the smallest value of FSC and SSC.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">© COPYRIGHT 2015 Elsevier B.V.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescein</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monoclonal antibodies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ovarian cancer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Masuda, Kenji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Watanabe, Kazuhiko</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miyadai, Kenji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nonaka, Koichi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yabuta, Masayuki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Omasa, Takeshi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of bioscience and bioengineering</subfield><subfield code="d">Osaka, 1999</subfield><subfield code="g">120(2015), 3, Seite 340</subfield><subfield code="w">(DE-627)265549817</subfield><subfield code="w">(DE-600)1465387-4</subfield><subfield code="w">(DE-576)074842005</subfield><subfield code="x">1389-1723</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:340</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1016/j.jbiosc.2015.01.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25683450</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">340</subfield></datafield></record></collection>
|
score |
7.4017696 |