Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems
Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the n...
Ausführliche Beschreibung
Autor*in: |
Hagen, Trond H [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Propellants, explosives, pyrotechnics - Weinheim : Wiley-VCH, 1982, 40(2015), 2, Seite 275-284 |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2015 ; number:2 ; pages:275-284 |
Links: |
---|
DOI / URN: |
10.1002/prep.201400146 |
---|
Katalog-ID: |
OLC1965351190 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1965351190 | ||
003 | DE-627 | ||
005 | 20220217075052.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/prep.201400146 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1965351190 | ||
035 | |a (DE-599)GBVOLC1965351190 | ||
035 | |a (PRQ)c2296-b08a553a34813ca2a4c403c7ce7f6bf66a75c6783afc19fb2a0ac32189c6fbb03 | ||
035 | |a (KEY)0043344620150000040000200275curingofglycidylazidepolymergapdiolusingisocyanate | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 42 |a 660 |a 670 |a 760 |a 770 |q DNB |
082 | 0 | 4 | |a 660 |q AVZ |
100 | 1 | |a Hagen, Trond H |e verfasserin |4 aut | |
245 | 1 | 0 | |a Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method. | ||
540 | |a Nutzungsrecht: © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim | ||
650 | 4 | |a GAP | |
650 | 4 | |a Isocyanate curing | |
650 | 4 | |a Branched GAP | |
650 | 4 | |a Azide‐alkyne curing | |
650 | 4 | |a Dual curing | |
650 | 4 | |a Printing industry | |
650 | 4 | |a Curing | |
700 | 1 | |a Jensen, Tomas L |4 oth | |
700 | 1 | |a Unneberg, Erik |4 oth | |
700 | 1 | |a Stenstrøm, Yngve H |4 oth | |
700 | 1 | |a Kristensen, Tor E |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Propellants, explosives, pyrotechnics |d Weinheim : Wiley-VCH, 1982 |g 40(2015), 2, Seite 275-284 |w (DE-627)129619957 |w (DE-600)245919-X |w (DE-576)015125769 |x 0721-3115 |7 nnns |
773 | 1 | 8 | |g volume:40 |g year:2015 |g number:2 |g pages:275-284 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/prep.201400146 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/prep.201400146/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1670923596 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 40 |j 2015 |e 2 |h 275-284 |
author_variant |
t h h th thh |
---|---|
matchkey_str |
article:07213115:2015----::uigflcdlzdplmradouigscaaescaaereycrnudaa |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1002/prep.201400146 doi PQ20160617 (DE-627)OLC1965351190 (DE-599)GBVOLC1965351190 (PRQ)c2296-b08a553a34813ca2a4c403c7ce7f6bf66a75c6783afc19fb2a0ac32189c6fbb03 (KEY)0043344620150000040000200275curingofglycidylazidepolymergapdiolusingisocyanate DE-627 ger DE-627 rakwb eng 42 660 670 760 770 DNB 660 AVZ Hagen, Trond H verfasserin aut Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method. Nutzungsrecht: © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim GAP Isocyanate curing Branched GAP Azide‐alkyne curing Dual curing Printing industry Curing Jensen, Tomas L oth Unneberg, Erik oth Stenstrøm, Yngve H oth Kristensen, Tor E oth Enthalten in Propellants, explosives, pyrotechnics Weinheim : Wiley-VCH, 1982 40(2015), 2, Seite 275-284 (DE-627)129619957 (DE-600)245919-X (DE-576)015125769 0721-3115 nnns volume:40 year:2015 number:2 pages:275-284 http://dx.doi.org/10.1002/prep.201400146 Volltext http://onlinelibrary.wiley.com/doi/10.1002/prep.201400146/abstract http://search.proquest.com/docview/1670923596 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 AR 40 2015 2 275-284 |
spelling |
10.1002/prep.201400146 doi PQ20160617 (DE-627)OLC1965351190 (DE-599)GBVOLC1965351190 (PRQ)c2296-b08a553a34813ca2a4c403c7ce7f6bf66a75c6783afc19fb2a0ac32189c6fbb03 (KEY)0043344620150000040000200275curingofglycidylazidepolymergapdiolusingisocyanate DE-627 ger DE-627 rakwb eng 42 660 670 760 770 DNB 660 AVZ Hagen, Trond H verfasserin aut Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method. Nutzungsrecht: © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim GAP Isocyanate curing Branched GAP Azide‐alkyne curing Dual curing Printing industry Curing Jensen, Tomas L oth Unneberg, Erik oth Stenstrøm, Yngve H oth Kristensen, Tor E oth Enthalten in Propellants, explosives, pyrotechnics Weinheim : Wiley-VCH, 1982 40(2015), 2, Seite 275-284 (DE-627)129619957 (DE-600)245919-X (DE-576)015125769 0721-3115 nnns volume:40 year:2015 number:2 pages:275-284 http://dx.doi.org/10.1002/prep.201400146 Volltext http://onlinelibrary.wiley.com/doi/10.1002/prep.201400146/abstract http://search.proquest.com/docview/1670923596 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 AR 40 2015 2 275-284 |
allfields_unstemmed |
10.1002/prep.201400146 doi PQ20160617 (DE-627)OLC1965351190 (DE-599)GBVOLC1965351190 (PRQ)c2296-b08a553a34813ca2a4c403c7ce7f6bf66a75c6783afc19fb2a0ac32189c6fbb03 (KEY)0043344620150000040000200275curingofglycidylazidepolymergapdiolusingisocyanate DE-627 ger DE-627 rakwb eng 42 660 670 760 770 DNB 660 AVZ Hagen, Trond H verfasserin aut Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method. Nutzungsrecht: © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim GAP Isocyanate curing Branched GAP Azide‐alkyne curing Dual curing Printing industry Curing Jensen, Tomas L oth Unneberg, Erik oth Stenstrøm, Yngve H oth Kristensen, Tor E oth Enthalten in Propellants, explosives, pyrotechnics Weinheim : Wiley-VCH, 1982 40(2015), 2, Seite 275-284 (DE-627)129619957 (DE-600)245919-X (DE-576)015125769 0721-3115 nnns volume:40 year:2015 number:2 pages:275-284 http://dx.doi.org/10.1002/prep.201400146 Volltext http://onlinelibrary.wiley.com/doi/10.1002/prep.201400146/abstract http://search.proquest.com/docview/1670923596 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 AR 40 2015 2 275-284 |
allfieldsGer |
10.1002/prep.201400146 doi PQ20160617 (DE-627)OLC1965351190 (DE-599)GBVOLC1965351190 (PRQ)c2296-b08a553a34813ca2a4c403c7ce7f6bf66a75c6783afc19fb2a0ac32189c6fbb03 (KEY)0043344620150000040000200275curingofglycidylazidepolymergapdiolusingisocyanate DE-627 ger DE-627 rakwb eng 42 660 670 760 770 DNB 660 AVZ Hagen, Trond H verfasserin aut Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method. Nutzungsrecht: © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim GAP Isocyanate curing Branched GAP Azide‐alkyne curing Dual curing Printing industry Curing Jensen, Tomas L oth Unneberg, Erik oth Stenstrøm, Yngve H oth Kristensen, Tor E oth Enthalten in Propellants, explosives, pyrotechnics Weinheim : Wiley-VCH, 1982 40(2015), 2, Seite 275-284 (DE-627)129619957 (DE-600)245919-X (DE-576)015125769 0721-3115 nnns volume:40 year:2015 number:2 pages:275-284 http://dx.doi.org/10.1002/prep.201400146 Volltext http://onlinelibrary.wiley.com/doi/10.1002/prep.201400146/abstract http://search.proquest.com/docview/1670923596 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 AR 40 2015 2 275-284 |
allfieldsSound |
10.1002/prep.201400146 doi PQ20160617 (DE-627)OLC1965351190 (DE-599)GBVOLC1965351190 (PRQ)c2296-b08a553a34813ca2a4c403c7ce7f6bf66a75c6783afc19fb2a0ac32189c6fbb03 (KEY)0043344620150000040000200275curingofglycidylazidepolymergapdiolusingisocyanate DE-627 ger DE-627 rakwb eng 42 660 670 760 770 DNB 660 AVZ Hagen, Trond H verfasserin aut Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method. Nutzungsrecht: © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim GAP Isocyanate curing Branched GAP Azide‐alkyne curing Dual curing Printing industry Curing Jensen, Tomas L oth Unneberg, Erik oth Stenstrøm, Yngve H oth Kristensen, Tor E oth Enthalten in Propellants, explosives, pyrotechnics Weinheim : Wiley-VCH, 1982 40(2015), 2, Seite 275-284 (DE-627)129619957 (DE-600)245919-X (DE-576)015125769 0721-3115 nnns volume:40 year:2015 number:2 pages:275-284 http://dx.doi.org/10.1002/prep.201400146 Volltext http://onlinelibrary.wiley.com/doi/10.1002/prep.201400146/abstract http://search.proquest.com/docview/1670923596 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 AR 40 2015 2 275-284 |
language |
English |
source |
Enthalten in Propellants, explosives, pyrotechnics 40(2015), 2, Seite 275-284 volume:40 year:2015 number:2 pages:275-284 |
sourceStr |
Enthalten in Propellants, explosives, pyrotechnics 40(2015), 2, Seite 275-284 volume:40 year:2015 number:2 pages:275-284 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
GAP Isocyanate curing Branched GAP Azide‐alkyne curing Dual curing Printing industry Curing |
dewey-raw |
42 |
isfreeaccess_bool |
false |
container_title |
Propellants, explosives, pyrotechnics |
authorswithroles_txt_mv |
Hagen, Trond H @@aut@@ Jensen, Tomas L @@oth@@ Unneberg, Erik @@oth@@ Stenstrøm, Yngve H @@oth@@ Kristensen, Tor E @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129619957 |
dewey-sort |
242 |
id |
OLC1965351190 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1965351190</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220217075052.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/prep.201400146</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1965351190</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1965351190</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2296-b08a553a34813ca2a4c403c7ce7f6bf66a75c6783afc19fb2a0ac32189c6fbb03</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0043344620150000040000200275curingofglycidylazidepolymergapdiolusingisocyanate</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">42</subfield><subfield code="a">660</subfield><subfield code="a">670</subfield><subfield code="a">760</subfield><subfield code="a">770</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hagen, Trond H</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GAP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isocyanate curing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Branched GAP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Azide‐alkyne curing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual curing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Printing industry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jensen, Tomas L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Unneberg, Erik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stenstrøm, Yngve H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kristensen, Tor E</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Propellants, explosives, pyrotechnics</subfield><subfield code="d">Weinheim : Wiley-VCH, 1982</subfield><subfield code="g">40(2015), 2, Seite 275-284</subfield><subfield code="w">(DE-627)129619957</subfield><subfield code="w">(DE-600)245919-X</subfield><subfield code="w">(DE-576)015125769</subfield><subfield code="x">0721-3115</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:275-284</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/prep.201400146</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/prep.201400146/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1670923596</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">275-284</subfield></datafield></record></collection>
|
author |
Hagen, Trond H |
spellingShingle |
Hagen, Trond H ddc 42 ddc 660 misc GAP misc Isocyanate curing misc Branched GAP misc Azide‐alkyne curing misc Dual curing misc Printing industry misc Curing Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems |
authorStr |
Hagen, Trond H |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129619957 |
format |
Article |
dewey-ones |
042 - [Unassigned] 660 - Chemical engineering 670 - Manufacturing 760 - Graphic arts; printmaking & prints 770 - Photography, photographs & computer art |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0721-3115 |
topic_title |
42 660 670 760 770 DNB 660 AVZ Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems GAP Isocyanate curing Branched GAP Azide‐alkyne curing Dual curing Printing industry Curing |
topic |
ddc 42 ddc 660 misc GAP misc Isocyanate curing misc Branched GAP misc Azide‐alkyne curing misc Dual curing misc Printing industry misc Curing |
topic_unstemmed |
ddc 42 ddc 660 misc GAP misc Isocyanate curing misc Branched GAP misc Azide‐alkyne curing misc Dual curing misc Printing industry misc Curing |
topic_browse |
ddc 42 ddc 660 misc GAP misc Isocyanate curing misc Branched GAP misc Azide‐alkyne curing misc Dual curing misc Printing industry misc Curing |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t l j tl tlj e u eu y h s yh yhs t e k te tek |
hierarchy_parent_title |
Propellants, explosives, pyrotechnics |
hierarchy_parent_id |
129619957 |
dewey-tens |
040 - [Unassigned] 660 - Chemical engineering 670 - Manufacturing 760 - Graphic arts 770 - Photography & computer art |
hierarchy_top_title |
Propellants, explosives, pyrotechnics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129619957 (DE-600)245919-X (DE-576)015125769 |
title |
Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems |
ctrlnum |
(DE-627)OLC1965351190 (DE-599)GBVOLC1965351190 (PRQ)c2296-b08a553a34813ca2a4c403c7ce7f6bf66a75c6783afc19fb2a0ac32189c6fbb03 (KEY)0043344620150000040000200275curingofglycidylazidepolymergapdiolusingisocyanate |
title_full |
Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems |
author_sort |
Hagen, Trond H |
journal |
Propellants, explosives, pyrotechnics |
journalStr |
Propellants, explosives, pyrotechnics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology 700 - Arts & recreation |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
275 |
author_browse |
Hagen, Trond H |
container_volume |
40 |
class |
42 660 670 760 770 DNB 660 AVZ |
format_se |
Aufsätze |
author-letter |
Hagen, Trond H |
doi_str_mv |
10.1002/prep.201400146 |
dewey-full |
42 660 670 760 770 |
title_sort |
curing of glycidyl azide polymer (gap) diol using isocyanate, isocyanate‐free, synchronous dual, and sequential dual curing systems |
title_auth |
Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems |
abstract |
Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method. |
abstractGer |
Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method. |
abstract_unstemmed |
Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_70 GBV_ILN_267 GBV_ILN_2018 |
container_issue |
2 |
title_short |
Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems |
url |
http://dx.doi.org/10.1002/prep.201400146 http://onlinelibrary.wiley.com/doi/10.1002/prep.201400146/abstract http://search.proquest.com/docview/1670923596 |
remote_bool |
false |
author2 |
Jensen, Tomas L Unneberg, Erik Stenstrøm, Yngve H Kristensen, Tor E |
author2Str |
Jensen, Tomas L Unneberg, Erik Stenstrøm, Yngve H Kristensen, Tor E |
ppnlink |
129619957 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1002/prep.201400146 |
up_date |
2024-07-03T17:26:34.294Z |
_version_ |
1803579654715473920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1965351190</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220217075052.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/prep.201400146</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1965351190</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1965351190</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2296-b08a553a34813ca2a4c403c7ce7f6bf66a75c6783afc19fb2a0ac32189c6fbb03</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0043344620150000040000200275curingofglycidylazidepolymergapdiolusingisocyanate</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">42</subfield><subfield code="a">660</subfield><subfield code="a">670</subfield><subfield code="a">760</subfield><subfield code="a">770</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hagen, Trond H</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Curing of Glycidyl Azide Polymer (GAP) Diol Using Isocyanate, Isocyanate‐Free, Synchronous Dual, and Sequential Dual Curing Systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Glycidyl azide polymer (GAP) is an important energetic binder candidate for new minimum signature solid composite rocket propellants, but the mechanical properties of such GAP propellants are often limited. The mechanical characteristics of composite rocket propellants are mainly determined by the nature of the binder system and the binder‐filler interactions. In this work, we report a detailed investigation into curing systems for GAP diol with the objective of attaining the best possible mechanical characteristics as evaluated by uniaxial tensile testing of non‐plasticized polymer specimens. We started out by investigating isocyanate and isocyanate‐free curing systems, the latter by using the crystalline and easily soluble alkyne curing agent bispropargylhydroquinone (BPHQ). In the course of the presented study, we then assessed the feasibility of dual curing systems, either by using BPHQ and isophorone diisocyanate (IPDI) simultaneously (synchronous dual curing), or by applying propargyl alcohol and IPDI consecutively (sequential dual curing). The latter method, which employs propargyl alcohol as a readily available and adjustable hydroxyl‐telechelic branching agent for GAP through thermal triazole formation, gave rise to polymer specimens with mechanical characteristics that compared favorably with the best polymer specimens obtained from GAP diol and mixed isocyanate curatives. The glass transition temperature ( T g ) of non‐plasticized samples was heightened when triazole‐based curing agents were included, but when plasticized with nitratoethylnitramine (NENA) plasticizer, T g values were very similar, irrespective of the curing method.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GAP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Isocyanate curing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Branched GAP</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Azide‐alkyne curing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual curing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Printing industry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jensen, Tomas L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Unneberg, Erik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stenstrøm, Yngve H</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kristensen, Tor E</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Propellants, explosives, pyrotechnics</subfield><subfield code="d">Weinheim : Wiley-VCH, 1982</subfield><subfield code="g">40(2015), 2, Seite 275-284</subfield><subfield code="w">(DE-627)129619957</subfield><subfield code="w">(DE-600)245919-X</subfield><subfield code="w">(DE-576)015125769</subfield><subfield code="x">0721-3115</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:275-284</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/prep.201400146</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/prep.201400146/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1670923596</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">275-284</subfield></datafield></record></collection>
|
score |
7.4012384 |