Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy

The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled sam...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Jie Feng [verfasserIn]

Licheng Jiao

Fang Liu

Tao Sun

Xiangrong Zhang

Format:

Artikel

Sprache:

Englisch

Erschienen:

2015

Schlagwörter:

learning (artificial intelligence)

feature selection

land cover

Educational institutions

spectral band

MDI criterion

limited labeled sample

Approximation methods

Clonal selection algorithm (CSA)

convergence

Entropy

multivariable mutual information (MMI)

maximum discrimination and information

hyperspectral images

approximation theory

unlabeled samples

hyperspectral imaging

DIR

clonal selection algorithm

low-order approximation

semisupervised learning

mutual information-based semisupervised hyperspectral band selection

information theory

redundancy

hyperspectral band selection

mutation operators

adaptive clone operator

discrimination information redundancy

geophysical image processing

semi-supervised feature selection criteria

Information theory

Übergeordnetes Werk:

Enthalten in: IEEE transactions on geoscience and remote sensing - New York, NY : IEEE, 1964, 53(2015), 5, Seite 2956-2969

Übergeordnetes Werk:

volume:53 ; year:2015 ; number:5 ; pages:2956-2969

Links:

Volltext
Link aufrufen
Link aufrufen

DOI / URN:

10.1109/TGRS.2014.2367022

Katalog-ID:

OLC1965771629

Nicht das Richtige dabei?

Schreiben Sie uns!