Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy
The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled sam...
Ausführliche Beschreibung
Autor*in: |
Jie Feng [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on geoscience and remote sensing - New York, NY : IEEE, 1964, 53(2015), 5, Seite 2956-2969 |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2015 ; number:5 ; pages:2956-2969 |
Links: |
---|
DOI / URN: |
10.1109/TGRS.2014.2367022 |
---|
Katalog-ID: |
OLC1965771629 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1965771629 | ||
003 | DE-627 | ||
005 | 20230714164402.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TGRS.2014.2367022 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1965771629 | ||
035 | |a (DE-599)GBVOLC1965771629 | ||
035 | |a (PRQ)c2413-b18e9cddf41ed9c7391bfda189617ed74592a8d24a215acf5b4e3f2be188cc170 | ||
035 | |a (KEY)0048677920150000053000502956mutualinformationbasedsemisupervisedhyperspectralb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 550 |q DNB |
100 | 0 | |a Jie Feng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method. | ||
650 | 4 | |a learning (artificial intelligence) | |
650 | 4 | |a feature selection | |
650 | 4 | |a land cover | |
650 | 4 | |a Educational institutions | |
650 | 4 | |a spectral band | |
650 | 4 | |a MDI criterion | |
650 | 4 | |a limited labeled sample | |
650 | 4 | |a Approximation methods | |
650 | 4 | |a Clonal selection algorithm (CSA) | |
650 | 4 | |a convergence | |
650 | 4 | |a Entropy | |
650 | 4 | |a multivariable mutual information (MMI) | |
650 | 4 | |a maximum discrimination and information | |
650 | 4 | |a hyperspectral images | |
650 | 4 | |a approximation theory | |
650 | 4 | |a unlabeled samples | |
650 | 4 | |a hyperspectral imaging | |
650 | 4 | |a DIR | |
650 | 4 | |a clonal selection algorithm | |
650 | 4 | |a low-order approximation | |
650 | 4 | |a semisupervised learning | |
650 | 4 | |a mutual information-based semisupervised hyperspectral band selection | |
650 | 4 | |a information theory | |
650 | 4 | |a redundancy | |
650 | 4 | |a hyperspectral band selection | |
650 | 4 | |a mutation operators | |
650 | 4 | |a adaptive clone operator | |
650 | 4 | |a discrimination information redundancy | |
650 | 4 | |a geophysical image processing | |
650 | 4 | |a semi-supervised feature selection criteria | |
650 | 4 | |a Information theory | |
700 | 0 | |a Licheng Jiao |4 oth | |
700 | 0 | |a Fang Liu |4 oth | |
700 | 0 | |a Tao Sun |4 oth | |
700 | 0 | |a Xiangrong Zhang |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on geoscience and remote sensing |d New York, NY : IEEE, 1964 |g 53(2015), 5, Seite 2956-2969 |w (DE-627)129601667 |w (DE-600)241439-9 |w (DE-576)015095282 |x 0196-2892 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2015 |g number:5 |g pages:2956-2969 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TGRS.2014.2367022 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6977960 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1644050765 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2027 | ||
951 | |a AR | ||
952 | |d 53 |j 2015 |e 5 |h 2956-2969 |
author_variant |
j f jf |
---|---|
matchkey_str |
article:01962892:2015----::uulnomtobsdeiuevsdyesetabnslcinihihiciiain |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1109/TGRS.2014.2367022 doi PQ20160617 (DE-627)OLC1965771629 (DE-599)GBVOLC1965771629 (PRQ)c2413-b18e9cddf41ed9c7391bfda189617ed74592a8d24a215acf5b4e3f2be188cc170 (KEY)0048677920150000053000502956mutualinformationbasedsemisupervisedhyperspectralb DE-627 ger DE-627 rakwb eng 620 550 DNB Jie Feng verfasserin aut Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method. learning (artificial intelligence) feature selection land cover Educational institutions spectral band MDI criterion limited labeled sample Approximation methods Clonal selection algorithm (CSA) convergence Entropy multivariable mutual information (MMI) maximum discrimination and information hyperspectral images approximation theory unlabeled samples hyperspectral imaging DIR clonal selection algorithm low-order approximation semisupervised learning mutual information-based semisupervised hyperspectral band selection information theory redundancy hyperspectral band selection mutation operators adaptive clone operator discrimination information redundancy geophysical image processing semi-supervised feature selection criteria Information theory Licheng Jiao oth Fang Liu oth Tao Sun oth Xiangrong Zhang oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 53(2015), 5, Seite 2956-2969 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:53 year:2015 number:5 pages:2956-2969 http://dx.doi.org/10.1109/TGRS.2014.2367022 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6977960 http://search.proquest.com/docview/1644050765 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_2027 AR 53 2015 5 2956-2969 |
spelling |
10.1109/TGRS.2014.2367022 doi PQ20160617 (DE-627)OLC1965771629 (DE-599)GBVOLC1965771629 (PRQ)c2413-b18e9cddf41ed9c7391bfda189617ed74592a8d24a215acf5b4e3f2be188cc170 (KEY)0048677920150000053000502956mutualinformationbasedsemisupervisedhyperspectralb DE-627 ger DE-627 rakwb eng 620 550 DNB Jie Feng verfasserin aut Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method. learning (artificial intelligence) feature selection land cover Educational institutions spectral band MDI criterion limited labeled sample Approximation methods Clonal selection algorithm (CSA) convergence Entropy multivariable mutual information (MMI) maximum discrimination and information hyperspectral images approximation theory unlabeled samples hyperspectral imaging DIR clonal selection algorithm low-order approximation semisupervised learning mutual information-based semisupervised hyperspectral band selection information theory redundancy hyperspectral band selection mutation operators adaptive clone operator discrimination information redundancy geophysical image processing semi-supervised feature selection criteria Information theory Licheng Jiao oth Fang Liu oth Tao Sun oth Xiangrong Zhang oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 53(2015), 5, Seite 2956-2969 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:53 year:2015 number:5 pages:2956-2969 http://dx.doi.org/10.1109/TGRS.2014.2367022 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6977960 http://search.proquest.com/docview/1644050765 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_2027 AR 53 2015 5 2956-2969 |
allfields_unstemmed |
10.1109/TGRS.2014.2367022 doi PQ20160617 (DE-627)OLC1965771629 (DE-599)GBVOLC1965771629 (PRQ)c2413-b18e9cddf41ed9c7391bfda189617ed74592a8d24a215acf5b4e3f2be188cc170 (KEY)0048677920150000053000502956mutualinformationbasedsemisupervisedhyperspectralb DE-627 ger DE-627 rakwb eng 620 550 DNB Jie Feng verfasserin aut Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method. learning (artificial intelligence) feature selection land cover Educational institutions spectral band MDI criterion limited labeled sample Approximation methods Clonal selection algorithm (CSA) convergence Entropy multivariable mutual information (MMI) maximum discrimination and information hyperspectral images approximation theory unlabeled samples hyperspectral imaging DIR clonal selection algorithm low-order approximation semisupervised learning mutual information-based semisupervised hyperspectral band selection information theory redundancy hyperspectral band selection mutation operators adaptive clone operator discrimination information redundancy geophysical image processing semi-supervised feature selection criteria Information theory Licheng Jiao oth Fang Liu oth Tao Sun oth Xiangrong Zhang oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 53(2015), 5, Seite 2956-2969 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:53 year:2015 number:5 pages:2956-2969 http://dx.doi.org/10.1109/TGRS.2014.2367022 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6977960 http://search.proquest.com/docview/1644050765 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_2027 AR 53 2015 5 2956-2969 |
allfieldsGer |
10.1109/TGRS.2014.2367022 doi PQ20160617 (DE-627)OLC1965771629 (DE-599)GBVOLC1965771629 (PRQ)c2413-b18e9cddf41ed9c7391bfda189617ed74592a8d24a215acf5b4e3f2be188cc170 (KEY)0048677920150000053000502956mutualinformationbasedsemisupervisedhyperspectralb DE-627 ger DE-627 rakwb eng 620 550 DNB Jie Feng verfasserin aut Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method. learning (artificial intelligence) feature selection land cover Educational institutions spectral band MDI criterion limited labeled sample Approximation methods Clonal selection algorithm (CSA) convergence Entropy multivariable mutual information (MMI) maximum discrimination and information hyperspectral images approximation theory unlabeled samples hyperspectral imaging DIR clonal selection algorithm low-order approximation semisupervised learning mutual information-based semisupervised hyperspectral band selection information theory redundancy hyperspectral band selection mutation operators adaptive clone operator discrimination information redundancy geophysical image processing semi-supervised feature selection criteria Information theory Licheng Jiao oth Fang Liu oth Tao Sun oth Xiangrong Zhang oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 53(2015), 5, Seite 2956-2969 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:53 year:2015 number:5 pages:2956-2969 http://dx.doi.org/10.1109/TGRS.2014.2367022 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6977960 http://search.proquest.com/docview/1644050765 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_2027 AR 53 2015 5 2956-2969 |
allfieldsSound |
10.1109/TGRS.2014.2367022 doi PQ20160617 (DE-627)OLC1965771629 (DE-599)GBVOLC1965771629 (PRQ)c2413-b18e9cddf41ed9c7391bfda189617ed74592a8d24a215acf5b4e3f2be188cc170 (KEY)0048677920150000053000502956mutualinformationbasedsemisupervisedhyperspectralb DE-627 ger DE-627 rakwb eng 620 550 DNB Jie Feng verfasserin aut Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method. learning (artificial intelligence) feature selection land cover Educational institutions spectral band MDI criterion limited labeled sample Approximation methods Clonal selection algorithm (CSA) convergence Entropy multivariable mutual information (MMI) maximum discrimination and information hyperspectral images approximation theory unlabeled samples hyperspectral imaging DIR clonal selection algorithm low-order approximation semisupervised learning mutual information-based semisupervised hyperspectral band selection information theory redundancy hyperspectral band selection mutation operators adaptive clone operator discrimination information redundancy geophysical image processing semi-supervised feature selection criteria Information theory Licheng Jiao oth Fang Liu oth Tao Sun oth Xiangrong Zhang oth Enthalten in IEEE transactions on geoscience and remote sensing New York, NY : IEEE, 1964 53(2015), 5, Seite 2956-2969 (DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 0196-2892 nnns volume:53 year:2015 number:5 pages:2956-2969 http://dx.doi.org/10.1109/TGRS.2014.2367022 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6977960 http://search.proquest.com/docview/1644050765 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_2027 AR 53 2015 5 2956-2969 |
language |
English |
source |
Enthalten in IEEE transactions on geoscience and remote sensing 53(2015), 5, Seite 2956-2969 volume:53 year:2015 number:5 pages:2956-2969 |
sourceStr |
Enthalten in IEEE transactions on geoscience and remote sensing 53(2015), 5, Seite 2956-2969 volume:53 year:2015 number:5 pages:2956-2969 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
learning (artificial intelligence) feature selection land cover Educational institutions spectral band MDI criterion limited labeled sample Approximation methods Clonal selection algorithm (CSA) convergence Entropy multivariable mutual information (MMI) maximum discrimination and information hyperspectral images approximation theory unlabeled samples hyperspectral imaging DIR clonal selection algorithm low-order approximation semisupervised learning mutual information-based semisupervised hyperspectral band selection information theory redundancy hyperspectral band selection mutation operators adaptive clone operator discrimination information redundancy geophysical image processing semi-supervised feature selection criteria Information theory |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on geoscience and remote sensing |
authorswithroles_txt_mv |
Jie Feng @@aut@@ Licheng Jiao @@oth@@ Fang Liu @@oth@@ Tao Sun @@oth@@ Xiangrong Zhang @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129601667 |
dewey-sort |
3620 |
id |
OLC1965771629 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1965771629</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714164402.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TGRS.2014.2367022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1965771629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1965771629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2413-b18e9cddf41ed9c7391bfda189617ed74592a8d24a215acf5b4e3f2be188cc170</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0048677920150000053000502956mutualinformationbasedsemisupervisedhyperspectralb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jie Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">learning (artificial intelligence)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">land cover</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Educational institutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectral band</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MDI criterion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">limited labeled sample</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clonal selection algorithm (CSA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariable mutual information (MMI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximum discrimination and information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unlabeled samples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DIR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clonal selection algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low-order approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semisupervised learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mutual information-based semisupervised hyperspectral band selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral band selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mutation operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive clone operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrimination information redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geophysical image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semi-supervised feature selection criteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Licheng Jiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang Liu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Sun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangrong Zhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on geoscience and remote sensing</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">53(2015), 5, Seite 2956-2969</subfield><subfield code="w">(DE-627)129601667</subfield><subfield code="w">(DE-600)241439-9</subfield><subfield code="w">(DE-576)015095282</subfield><subfield code="x">0196-2892</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:2956-2969</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TGRS.2014.2367022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6977960</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1644050765</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2015</subfield><subfield code="e">5</subfield><subfield code="h">2956-2969</subfield></datafield></record></collection>
|
author |
Jie Feng |
spellingShingle |
Jie Feng ddc 620 misc learning (artificial intelligence) misc feature selection misc land cover misc Educational institutions misc spectral band misc MDI criterion misc limited labeled sample misc Approximation methods misc Clonal selection algorithm (CSA) misc convergence misc Entropy misc multivariable mutual information (MMI) misc maximum discrimination and information misc hyperspectral images misc approximation theory misc unlabeled samples misc hyperspectral imaging misc DIR misc clonal selection algorithm misc low-order approximation misc semisupervised learning misc mutual information-based semisupervised hyperspectral band selection misc information theory misc redundancy misc hyperspectral band selection misc mutation operators misc adaptive clone operator misc discrimination information redundancy misc geophysical image processing misc semi-supervised feature selection criteria misc Information theory Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy |
authorStr |
Jie Feng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601667 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0196-2892 |
topic_title |
620 550 DNB Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy learning (artificial intelligence) feature selection land cover Educational institutions spectral band MDI criterion limited labeled sample Approximation methods Clonal selection algorithm (CSA) convergence Entropy multivariable mutual information (MMI) maximum discrimination and information hyperspectral images approximation theory unlabeled samples hyperspectral imaging DIR clonal selection algorithm low-order approximation semisupervised learning mutual information-based semisupervised hyperspectral band selection information theory redundancy hyperspectral band selection mutation operators adaptive clone operator discrimination information redundancy geophysical image processing semi-supervised feature selection criteria Information theory |
topic |
ddc 620 misc learning (artificial intelligence) misc feature selection misc land cover misc Educational institutions misc spectral band misc MDI criterion misc limited labeled sample misc Approximation methods misc Clonal selection algorithm (CSA) misc convergence misc Entropy misc multivariable mutual information (MMI) misc maximum discrimination and information misc hyperspectral images misc approximation theory misc unlabeled samples misc hyperspectral imaging misc DIR misc clonal selection algorithm misc low-order approximation misc semisupervised learning misc mutual information-based semisupervised hyperspectral band selection misc information theory misc redundancy misc hyperspectral band selection misc mutation operators misc adaptive clone operator misc discrimination information redundancy misc geophysical image processing misc semi-supervised feature selection criteria misc Information theory |
topic_unstemmed |
ddc 620 misc learning (artificial intelligence) misc feature selection misc land cover misc Educational institutions misc spectral band misc MDI criterion misc limited labeled sample misc Approximation methods misc Clonal selection algorithm (CSA) misc convergence misc Entropy misc multivariable mutual information (MMI) misc maximum discrimination and information misc hyperspectral images misc approximation theory misc unlabeled samples misc hyperspectral imaging misc DIR misc clonal selection algorithm misc low-order approximation misc semisupervised learning misc mutual information-based semisupervised hyperspectral band selection misc information theory misc redundancy misc hyperspectral band selection misc mutation operators misc adaptive clone operator misc discrimination information redundancy misc geophysical image processing misc semi-supervised feature selection criteria misc Information theory |
topic_browse |
ddc 620 misc learning (artificial intelligence) misc feature selection misc land cover misc Educational institutions misc spectral band misc MDI criterion misc limited labeled sample misc Approximation methods misc Clonal selection algorithm (CSA) misc convergence misc Entropy misc multivariable mutual information (MMI) misc maximum discrimination and information misc hyperspectral images misc approximation theory misc unlabeled samples misc hyperspectral imaging misc DIR misc clonal selection algorithm misc low-order approximation misc semisupervised learning misc mutual information-based semisupervised hyperspectral band selection misc information theory misc redundancy misc hyperspectral band selection misc mutation operators misc adaptive clone operator misc discrimination information redundancy misc geophysical image processing misc semi-supervised feature selection criteria misc Information theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
l j lj f l fl t s ts x z xz |
hierarchy_parent_title |
IEEE transactions on geoscience and remote sensing |
hierarchy_parent_id |
129601667 |
dewey-tens |
620 - Engineering 550 - Earth sciences & geology |
hierarchy_top_title |
IEEE transactions on geoscience and remote sensing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601667 (DE-600)241439-9 (DE-576)015095282 |
title |
Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy |
ctrlnum |
(DE-627)OLC1965771629 (DE-599)GBVOLC1965771629 (PRQ)c2413-b18e9cddf41ed9c7391bfda189617ed74592a8d24a215acf5b4e3f2be188cc170 (KEY)0048677920150000053000502956mutualinformationbasedsemisupervisedhyperspectralb |
title_full |
Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy |
author_sort |
Jie Feng |
journal |
IEEE transactions on geoscience and remote sensing |
journalStr |
IEEE transactions on geoscience and remote sensing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
2956 |
author_browse |
Jie Feng |
container_volume |
53 |
class |
620 550 DNB |
format_se |
Aufsätze |
author-letter |
Jie Feng |
doi_str_mv |
10.1109/TGRS.2014.2367022 |
dewey-full |
620 550 |
title_sort |
mutual-information-based semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy |
title_auth |
Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy |
abstract |
The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method. |
abstractGer |
The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method. |
abstract_unstemmed |
The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-GEO SSG-OLC-FOR SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_70 GBV_ILN_2027 |
container_issue |
5 |
title_short |
Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy |
url |
http://dx.doi.org/10.1109/TGRS.2014.2367022 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6977960 http://search.proquest.com/docview/1644050765 |
remote_bool |
false |
author2 |
Licheng Jiao Fang Liu Tao Sun Xiangrong Zhang |
author2Str |
Licheng Jiao Fang Liu Tao Sun Xiangrong Zhang |
ppnlink |
129601667 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1109/TGRS.2014.2367022 |
up_date |
2024-07-03T19:04:42.235Z |
_version_ |
1803585828671193088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1965771629</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714164402.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TGRS.2014.2367022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1965771629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1965771629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2413-b18e9cddf41ed9c7391bfda189617ed74592a8d24a215acf5b4e3f2be188cc170</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0048677920150000053000502956mutualinformationbasedsemisupervisedhyperspectralb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jie Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mutual-Information-Based Semi-Supervised Hyperspectral Band Selection With High Discrimination, High Information, and Low Redundancy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The large number of spectral bands in hyperspectral images provides abundant information to distinguish different land covers. However, these spectral bands have much redundancy and bring an extra computational burden. Thus, band selection is important for hyperspectral images. Since the labeled samples are difficult to obtain, a semi-supervised criterion based on maximum discrimination and information (MDI) is defined by using both limited labeled samples and sufficient unlabeled samples. This MDI criterion aims to select the most highly discriminative and informative bands, but it is hard to accurately calculate. Therefore, a novel criterion based on high discrimination, high information, and low redundancy (DIR) is proposed as its low-order approximation. Moreover, from an information theory perspective, a theoretical proof is given that many traditional semi-supervised feature selection criteria are the low-order approximations of this MDI criterion. Compared with them, the proposed criterion needs more relaxed approximation conditions. To search and optimize the proposed criterion, a novel clonal selection algorithm is proposed, where the adaptive clone and mutation operators are devised to speed up the convergence. Experimental results on hyperspectral images demonstrate the effectiveness of the proposed semi-supervised band selection method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">learning (artificial intelligence)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">feature selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">land cover</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Educational institutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectral band</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MDI criterion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">limited labeled sample</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clonal selection algorithm (CSA)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariable mutual information (MMI)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximum discrimination and information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unlabeled samples</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DIR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clonal selection algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low-order approximation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semisupervised learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mutual information-based semisupervised hyperspectral band selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperspectral band selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mutation operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">adaptive clone operator</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrimination information redundancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geophysical image processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">semi-supervised feature selection criteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Licheng Jiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fang Liu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tao Sun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Xiangrong Zhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on geoscience and remote sensing</subfield><subfield code="d">New York, NY : IEEE, 1964</subfield><subfield code="g">53(2015), 5, Seite 2956-2969</subfield><subfield code="w">(DE-627)129601667</subfield><subfield code="w">(DE-600)241439-9</subfield><subfield code="w">(DE-576)015095282</subfield><subfield code="x">0196-2892</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:2956-2969</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TGRS.2014.2367022</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6977960</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1644050765</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2015</subfield><subfield code="e">5</subfield><subfield code="h">2956-2969</subfield></datafield></record></collection>
|
score |
7.40125 |