An evaluation of three commercially available metal artifact reduction methods for CT imaging
Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal a...
Ausführliche Beschreibung
Autor*in: |
Huang, Jessie Y [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Physics in medicine and biology - Bristol : IOP Publ., 1956, 60(2015), 3, Seite 1047 |
---|---|
Übergeordnetes Werk: |
volume:60 ; year:2015 ; number:3 ; pages:1047 |
Links: |
---|
Katalog-ID: |
OLC196607705X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC196607705X | ||
003 | DE-627 | ||
005 | 20220221161916.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC196607705X | ||
035 | |a (DE-599)GBVOLC196607705X | ||
035 | |a (PRQ)p1196-28c554090f24c95ac7b734a648afe2c65a42d938ee46ec7b951159259354ca530 | ||
035 | |a (KEY)0053250920150000060000301047evaluationofthreecommerciallyavailablemetalartifac | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 540 |a 530 |q DNB |
084 | |a BIODIV |2 fid | ||
084 | |a WA 15000 |q AVZ |2 rvk | ||
084 | |a 44.31 |2 bkl | ||
084 | |a 42.12 |2 bkl | ||
100 | 1 | |a Huang, Jessie Y |e verfasserin |4 aut | |
245 | 1 | 3 | |a An evaluation of three commercially available metal artifact reduction methods for CT imaging |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. | ||
650 | 4 | |a Radiographic Image Enhancement - methods | |
650 | 4 | |a Thoracic Vertebrae - injuries | |
650 | 4 | |a Thoracic Vertebrae - surgery | |
650 | 4 | |a Radiographic Image Interpretation, Computer-Assisted - methods | |
650 | 4 | |a Tomography, X-Ray Computed - methods | |
700 | 1 | |a Kerns, James R |4 oth | |
700 | 1 | |a Nute, Jessica L |4 oth | |
700 | 1 | |a Liu, Xinming |4 oth | |
700 | 1 | |a Balter, Peter A |4 oth | |
700 | 1 | |a Stingo, Francesco C |4 oth | |
700 | 1 | |a Followill, David S |4 oth | |
700 | 1 | |a Mirkovic, Dragan |4 oth | |
700 | 1 | |a Howell, Rebecca M |4 oth | |
700 | 1 | |a Kry, Stephen F |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Physics in medicine and biology |d Bristol : IOP Publ., 1956 |g 60(2015), 3, Seite 1047 |w (DE-627)129503991 |w (DE-600)208857-5 |w (DE-576)014907305 |x 0031-9155 |7 nnns |
773 | 1 | 8 | |g volume:60 |g year:2015 |g number:3 |g pages:1047 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25585685 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4306 | ||
936 | r | v | |a WA 15000 |
936 | b | k | |a 44.31 |q AVZ |
936 | b | k | |a 42.12 |q AVZ |
951 | |a AR | ||
952 | |d 60 |j 2015 |e 3 |h 1047 |
author_variant |
j y h jy jyh |
---|---|
matchkey_str |
article:00319155:2015----::nvlainfhecmecalaalbeeaatfcrdci |
hierarchy_sort_str |
2015 |
bklnumber |
44.31 42.12 |
publishDate |
2015 |
allfields |
PQ20160617 (DE-627)OLC196607705X (DE-599)GBVOLC196607705X (PRQ)p1196-28c554090f24c95ac7b734a648afe2c65a42d938ee46ec7b951159259354ca530 (KEY)0053250920150000060000301047evaluationofthreecommerciallyavailablemetalartifac DE-627 ger DE-627 rakwb eng 570 540 530 DNB BIODIV fid WA 15000 AVZ rvk 44.31 bkl 42.12 bkl Huang, Jessie Y verfasserin aut An evaluation of three commercially available metal artifact reduction methods for CT imaging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. Radiographic Image Enhancement - methods Thoracic Vertebrae - injuries Thoracic Vertebrae - surgery Radiographic Image Interpretation, Computer-Assisted - methods Tomography, X-Ray Computed - methods Kerns, James R oth Nute, Jessica L oth Liu, Xinming oth Balter, Peter A oth Stingo, Francesco C oth Followill, David S oth Mirkovic, Dragan oth Howell, Rebecca M oth Kry, Stephen F oth Enthalten in Physics in medicine and biology Bristol : IOP Publ., 1956 60(2015), 3, Seite 1047 (DE-627)129503991 (DE-600)208857-5 (DE-576)014907305 0031-9155 nnns volume:60 year:2015 number:3 pages:1047 http://www.ncbi.nlm.nih.gov/pubmed/25585685 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 WA 15000 44.31 AVZ 42.12 AVZ AR 60 2015 3 1047 |
spelling |
PQ20160617 (DE-627)OLC196607705X (DE-599)GBVOLC196607705X (PRQ)p1196-28c554090f24c95ac7b734a648afe2c65a42d938ee46ec7b951159259354ca530 (KEY)0053250920150000060000301047evaluationofthreecommerciallyavailablemetalartifac DE-627 ger DE-627 rakwb eng 570 540 530 DNB BIODIV fid WA 15000 AVZ rvk 44.31 bkl 42.12 bkl Huang, Jessie Y verfasserin aut An evaluation of three commercially available metal artifact reduction methods for CT imaging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. Radiographic Image Enhancement - methods Thoracic Vertebrae - injuries Thoracic Vertebrae - surgery Radiographic Image Interpretation, Computer-Assisted - methods Tomography, X-Ray Computed - methods Kerns, James R oth Nute, Jessica L oth Liu, Xinming oth Balter, Peter A oth Stingo, Francesco C oth Followill, David S oth Mirkovic, Dragan oth Howell, Rebecca M oth Kry, Stephen F oth Enthalten in Physics in medicine and biology Bristol : IOP Publ., 1956 60(2015), 3, Seite 1047 (DE-627)129503991 (DE-600)208857-5 (DE-576)014907305 0031-9155 nnns volume:60 year:2015 number:3 pages:1047 http://www.ncbi.nlm.nih.gov/pubmed/25585685 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 WA 15000 44.31 AVZ 42.12 AVZ AR 60 2015 3 1047 |
allfields_unstemmed |
PQ20160617 (DE-627)OLC196607705X (DE-599)GBVOLC196607705X (PRQ)p1196-28c554090f24c95ac7b734a648afe2c65a42d938ee46ec7b951159259354ca530 (KEY)0053250920150000060000301047evaluationofthreecommerciallyavailablemetalartifac DE-627 ger DE-627 rakwb eng 570 540 530 DNB BIODIV fid WA 15000 AVZ rvk 44.31 bkl 42.12 bkl Huang, Jessie Y verfasserin aut An evaluation of three commercially available metal artifact reduction methods for CT imaging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. Radiographic Image Enhancement - methods Thoracic Vertebrae - injuries Thoracic Vertebrae - surgery Radiographic Image Interpretation, Computer-Assisted - methods Tomography, X-Ray Computed - methods Kerns, James R oth Nute, Jessica L oth Liu, Xinming oth Balter, Peter A oth Stingo, Francesco C oth Followill, David S oth Mirkovic, Dragan oth Howell, Rebecca M oth Kry, Stephen F oth Enthalten in Physics in medicine and biology Bristol : IOP Publ., 1956 60(2015), 3, Seite 1047 (DE-627)129503991 (DE-600)208857-5 (DE-576)014907305 0031-9155 nnns volume:60 year:2015 number:3 pages:1047 http://www.ncbi.nlm.nih.gov/pubmed/25585685 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 WA 15000 44.31 AVZ 42.12 AVZ AR 60 2015 3 1047 |
allfieldsGer |
PQ20160617 (DE-627)OLC196607705X (DE-599)GBVOLC196607705X (PRQ)p1196-28c554090f24c95ac7b734a648afe2c65a42d938ee46ec7b951159259354ca530 (KEY)0053250920150000060000301047evaluationofthreecommerciallyavailablemetalartifac DE-627 ger DE-627 rakwb eng 570 540 530 DNB BIODIV fid WA 15000 AVZ rvk 44.31 bkl 42.12 bkl Huang, Jessie Y verfasserin aut An evaluation of three commercially available metal artifact reduction methods for CT imaging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. Radiographic Image Enhancement - methods Thoracic Vertebrae - injuries Thoracic Vertebrae - surgery Radiographic Image Interpretation, Computer-Assisted - methods Tomography, X-Ray Computed - methods Kerns, James R oth Nute, Jessica L oth Liu, Xinming oth Balter, Peter A oth Stingo, Francesco C oth Followill, David S oth Mirkovic, Dragan oth Howell, Rebecca M oth Kry, Stephen F oth Enthalten in Physics in medicine and biology Bristol : IOP Publ., 1956 60(2015), 3, Seite 1047 (DE-627)129503991 (DE-600)208857-5 (DE-576)014907305 0031-9155 nnns volume:60 year:2015 number:3 pages:1047 http://www.ncbi.nlm.nih.gov/pubmed/25585685 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 WA 15000 44.31 AVZ 42.12 AVZ AR 60 2015 3 1047 |
allfieldsSound |
PQ20160617 (DE-627)OLC196607705X (DE-599)GBVOLC196607705X (PRQ)p1196-28c554090f24c95ac7b734a648afe2c65a42d938ee46ec7b951159259354ca530 (KEY)0053250920150000060000301047evaluationofthreecommerciallyavailablemetalartifac DE-627 ger DE-627 rakwb eng 570 540 530 DNB BIODIV fid WA 15000 AVZ rvk 44.31 bkl 42.12 bkl Huang, Jessie Y verfasserin aut An evaluation of three commercially available metal artifact reduction methods for CT imaging 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. Radiographic Image Enhancement - methods Thoracic Vertebrae - injuries Thoracic Vertebrae - surgery Radiographic Image Interpretation, Computer-Assisted - methods Tomography, X-Ray Computed - methods Kerns, James R oth Nute, Jessica L oth Liu, Xinming oth Balter, Peter A oth Stingo, Francesco C oth Followill, David S oth Mirkovic, Dragan oth Howell, Rebecca M oth Kry, Stephen F oth Enthalten in Physics in medicine and biology Bristol : IOP Publ., 1956 60(2015), 3, Seite 1047 (DE-627)129503991 (DE-600)208857-5 (DE-576)014907305 0031-9155 nnns volume:60 year:2015 number:3 pages:1047 http://www.ncbi.nlm.nih.gov/pubmed/25585685 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 WA 15000 44.31 AVZ 42.12 AVZ AR 60 2015 3 1047 |
language |
English |
source |
Enthalten in Physics in medicine and biology 60(2015), 3, Seite 1047 volume:60 year:2015 number:3 pages:1047 |
sourceStr |
Enthalten in Physics in medicine and biology 60(2015), 3, Seite 1047 volume:60 year:2015 number:3 pages:1047 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Radiographic Image Enhancement - methods Thoracic Vertebrae - injuries Thoracic Vertebrae - surgery Radiographic Image Interpretation, Computer-Assisted - methods Tomography, X-Ray Computed - methods |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Physics in medicine and biology |
authorswithroles_txt_mv |
Huang, Jessie Y @@aut@@ Kerns, James R @@oth@@ Nute, Jessica L @@oth@@ Liu, Xinming @@oth@@ Balter, Peter A @@oth@@ Stingo, Francesco C @@oth@@ Followill, David S @@oth@@ Mirkovic, Dragan @@oth@@ Howell, Rebecca M @@oth@@ Kry, Stephen F @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129503991 |
dewey-sort |
3570 |
id |
OLC196607705X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC196607705X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221161916.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC196607705X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC196607705X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1196-28c554090f24c95ac7b734a648afe2c65a42d938ee46ec7b951159259354ca530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0053250920150000060000301047evaluationofthreecommerciallyavailablemetalartifac</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WA 15000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Jessie Y</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An evaluation of three commercially available metal artifact reduction methods for CT imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiographic Image Enhancement - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thoracic Vertebrae - injuries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thoracic Vertebrae - surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiographic Image Interpretation, Computer-Assisted - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tomography, X-Ray Computed - methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerns, James R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nute, Jessica L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xinming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balter, Peter A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stingo, Francesco C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Followill, David S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirkovic, Dragan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Howell, Rebecca M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kry, Stephen F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics in medicine and biology</subfield><subfield code="d">Bristol : IOP Publ., 1956</subfield><subfield code="g">60(2015), 3, Seite 1047</subfield><subfield code="w">(DE-627)129503991</subfield><subfield code="w">(DE-600)208857-5</subfield><subfield code="w">(DE-576)014907305</subfield><subfield code="x">0031-9155</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1047</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25585685</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">WA 15000</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.31</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">1047</subfield></datafield></record></collection>
|
author |
Huang, Jessie Y |
spellingShingle |
Huang, Jessie Y ddc 570 fid BIODIV rvk WA 15000 bkl 44.31 bkl 42.12 misc Radiographic Image Enhancement - methods misc Thoracic Vertebrae - injuries misc Thoracic Vertebrae - surgery misc Radiographic Image Interpretation, Computer-Assisted - methods misc Tomography, X-Ray Computed - methods An evaluation of three commercially available metal artifact reduction methods for CT imaging |
authorStr |
Huang, Jessie Y |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129503991 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 540 - Chemistry & allied sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0031-9155 |
topic_title |
570 540 530 DNB BIODIV fid WA 15000 AVZ rvk 44.31 bkl 42.12 bkl An evaluation of three commercially available metal artifact reduction methods for CT imaging Radiographic Image Enhancement - methods Thoracic Vertebrae - injuries Thoracic Vertebrae - surgery Radiographic Image Interpretation, Computer-Assisted - methods Tomography, X-Ray Computed - methods |
topic |
ddc 570 fid BIODIV rvk WA 15000 bkl 44.31 bkl 42.12 misc Radiographic Image Enhancement - methods misc Thoracic Vertebrae - injuries misc Thoracic Vertebrae - surgery misc Radiographic Image Interpretation, Computer-Assisted - methods misc Tomography, X-Ray Computed - methods |
topic_unstemmed |
ddc 570 fid BIODIV rvk WA 15000 bkl 44.31 bkl 42.12 misc Radiographic Image Enhancement - methods misc Thoracic Vertebrae - injuries misc Thoracic Vertebrae - surgery misc Radiographic Image Interpretation, Computer-Assisted - methods misc Tomography, X-Ray Computed - methods |
topic_browse |
ddc 570 fid BIODIV rvk WA 15000 bkl 44.31 bkl 42.12 misc Radiographic Image Enhancement - methods misc Thoracic Vertebrae - injuries misc Thoracic Vertebrae - surgery misc Radiographic Image Interpretation, Computer-Assisted - methods misc Tomography, X-Ray Computed - methods |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j r k jr jrk j l n jl jln x l xl p a b pa pab f c s fc fcs d s f ds dsf d m dm r m h rm rmh s f k sf sfk |
hierarchy_parent_title |
Physics in medicine and biology |
hierarchy_parent_id |
129503991 |
dewey-tens |
570 - Life sciences; biology 540 - Chemistry 530 - Physics |
hierarchy_top_title |
Physics in medicine and biology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129503991 (DE-600)208857-5 (DE-576)014907305 |
title |
An evaluation of three commercially available metal artifact reduction methods for CT imaging |
ctrlnum |
(DE-627)OLC196607705X (DE-599)GBVOLC196607705X (PRQ)p1196-28c554090f24c95ac7b734a648afe2c65a42d938ee46ec7b951159259354ca530 (KEY)0053250920150000060000301047evaluationofthreecommerciallyavailablemetalartifac |
title_full |
An evaluation of three commercially available metal artifact reduction methods for CT imaging |
author_sort |
Huang, Jessie Y |
journal |
Physics in medicine and biology |
journalStr |
Physics in medicine and biology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1047 |
author_browse |
Huang, Jessie Y |
container_volume |
60 |
class |
570 540 530 DNB BIODIV fid WA 15000 AVZ rvk 44.31 bkl 42.12 bkl |
format_se |
Aufsätze |
author-letter |
Huang, Jessie Y |
dewey-full |
570 540 530 |
title_sort |
evaluation of three commercially available metal artifact reduction methods for ct imaging |
title_auth |
An evaluation of three commercially available metal artifact reduction methods for CT imaging |
abstract |
Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. |
abstractGer |
Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. |
abstract_unstemmed |
Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE GBV_ILN_22 GBV_ILN_70 GBV_ILN_170 GBV_ILN_4012 GBV_ILN_4219 GBV_ILN_4306 |
container_issue |
3 |
title_short |
An evaluation of three commercially available metal artifact reduction methods for CT imaging |
url |
http://www.ncbi.nlm.nih.gov/pubmed/25585685 |
remote_bool |
false |
author2 |
Kerns, James R Nute, Jessica L Liu, Xinming Balter, Peter A Stingo, Francesco C Followill, David S Mirkovic, Dragan Howell, Rebecca M Kry, Stephen F |
author2Str |
Kerns, James R Nute, Jessica L Liu, Xinming Balter, Peter A Stingo, Francesco C Followill, David S Mirkovic, Dragan Howell, Rebecca M Kry, Stephen F |
ppnlink |
129503991 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
up_date |
2024-07-03T20:15:45.613Z |
_version_ |
1803590299145994241 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC196607705X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221161916.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC196607705X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC196607705X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1196-28c554090f24c95ac7b734a648afe2c65a42d938ee46ec7b951159259354ca530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0053250920150000060000301047evaluationofthreecommerciallyavailablemetalartifac</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">540</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WA 15000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Jessie Y</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An evaluation of three commercially available metal artifact reduction methods for CT imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiographic Image Enhancement - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thoracic Vertebrae - injuries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thoracic Vertebrae - surgery</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiographic Image Interpretation, Computer-Assisted - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tomography, X-Ray Computed - methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kerns, James R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nute, Jessica L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xinming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balter, Peter A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stingo, Francesco C</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Followill, David S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirkovic, Dragan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Howell, Rebecca M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kry, Stephen F</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics in medicine and biology</subfield><subfield code="d">Bristol : IOP Publ., 1956</subfield><subfield code="g">60(2015), 3, Seite 1047</subfield><subfield code="w">(DE-627)129503991</subfield><subfield code="w">(DE-600)208857-5</subfield><subfield code="w">(DE-576)014907305</subfield><subfield code="x">0031-9155</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1047</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25585685</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">WA 15000</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.31</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">1047</subfield></datafield></record></collection>
|
score |
7.4021826 |