Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer
A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notati...
Ausführliche Beschreibung
Autor*in: |
Knecht, Sean D [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on plasma science - New York, NY : IEEE, 1973, 43(2015), 8, Seite 2469-2479 |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2015 ; number:8 ; pages:2469-2479 |
Links: |
---|
DOI / URN: |
10.1109/TPS.2015.2431973 |
---|
Katalog-ID: |
OLC1966516223 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1966516223 | ||
003 | DE-627 | ||
005 | 20220221143504.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TPS.2015.2431973 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1966516223 | ||
035 | |a (DE-599)GBVOLC1966516223 | ||
035 | |a (PRQ)g1926-16ede44091de838a0871403a5ae94f68ae5db9483a4cc3e7c34c52592cbe6db10 | ||
035 | |a (KEY)0058744320150000043000802469calculationoftheequilibriumevolutionofthezapflowzp | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DNB |
084 | |a 33.80 |2 bkl | ||
100 | 1 | |a Knecht, Sean D |e verfasserin |4 aut | |
245 | 1 | 0 | |a Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period. | ||
650 | 4 | |a plasma heating | |
650 | 4 | |a Measurement by laser beam | |
650 | 4 | |a Laser beams | |
650 | 4 | |a Probes | |
650 | 4 | |a Z-pinch | |
650 | 4 | |a Equilibrium evolution | |
650 | 4 | |a Density measurement | |
650 | 4 | |a pinch oscillation | |
650 | 4 | |a Conductors | |
650 | 4 | |a Plasmas | |
650 | 4 | |a Interferometry | |
650 | 4 | |a Magnetic fields | |
650 | 4 | |a Heat conductivity | |
650 | 4 | |a Plasma physics | |
650 | 4 | |a Equilibrium | |
650 | 4 | |a Interferometers | |
650 | 4 | |a Research | |
650 | 4 | |a Pinch effect (Physics) | |
650 | 4 | |a Usage | |
700 | 1 | |a Golingo, Raymond P |4 oth | |
700 | 1 | |a Nelson, Brian A |4 oth | |
700 | 1 | |a Shumlak, Uri |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on plasma science |d New York, NY : IEEE, 1973 |g 43(2015), 8, Seite 2469-2479 |w (DE-627)129391379 |w (DE-600)184848-3 |w (DE-576)014776553 |x 0093-3813 |7 nnns |
773 | 1 | 8 | |g volume:43 |g year:2015 |g number:8 |g pages:2469-2479 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TPS.2015.2431973 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7112530 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1703586351 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 33.80 |q AVZ |
951 | |a AR | ||
952 | |d 43 |j 2015 |e 8 |h 2469-2479 |
author_variant |
s d k sd sdk |
---|---|
matchkey_str |
article:00933813:2015----::acltooteqiirueouinfhzplwpnhsna |
hierarchy_sort_str |
2015 |
bklnumber |
33.80 |
publishDate |
2015 |
allfields |
10.1109/TPS.2015.2431973 doi PQ20160617 (DE-627)OLC1966516223 (DE-599)GBVOLC1966516223 (PRQ)g1926-16ede44091de838a0871403a5ae94f68ae5db9483a4cc3e7c34c52592cbe6db10 (KEY)0058744320150000043000802469calculationoftheequilibriumevolutionofthezapflowzp DE-627 ger DE-627 rakwb eng 530 DNB 33.80 bkl Knecht, Sean D verfasserin aut Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period. plasma heating Measurement by laser beam Laser beams Probes Z-pinch Equilibrium evolution Density measurement pinch oscillation Conductors Plasmas Interferometry Magnetic fields Heat conductivity Plasma physics Equilibrium Interferometers Research Pinch effect (Physics) Usage Golingo, Raymond P oth Nelson, Brian A oth Shumlak, Uri oth Enthalten in IEEE transactions on plasma science New York, NY : IEEE, 1973 43(2015), 8, Seite 2469-2479 (DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 0093-3813 nnns volume:43 year:2015 number:8 pages:2469-2479 http://dx.doi.org/10.1109/TPS.2015.2431973 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7112530 http://search.proquest.com/docview/1703586351 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.80 AVZ AR 43 2015 8 2469-2479 |
spelling |
10.1109/TPS.2015.2431973 doi PQ20160617 (DE-627)OLC1966516223 (DE-599)GBVOLC1966516223 (PRQ)g1926-16ede44091de838a0871403a5ae94f68ae5db9483a4cc3e7c34c52592cbe6db10 (KEY)0058744320150000043000802469calculationoftheequilibriumevolutionofthezapflowzp DE-627 ger DE-627 rakwb eng 530 DNB 33.80 bkl Knecht, Sean D verfasserin aut Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period. plasma heating Measurement by laser beam Laser beams Probes Z-pinch Equilibrium evolution Density measurement pinch oscillation Conductors Plasmas Interferometry Magnetic fields Heat conductivity Plasma physics Equilibrium Interferometers Research Pinch effect (Physics) Usage Golingo, Raymond P oth Nelson, Brian A oth Shumlak, Uri oth Enthalten in IEEE transactions on plasma science New York, NY : IEEE, 1973 43(2015), 8, Seite 2469-2479 (DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 0093-3813 nnns volume:43 year:2015 number:8 pages:2469-2479 http://dx.doi.org/10.1109/TPS.2015.2431973 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7112530 http://search.proquest.com/docview/1703586351 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.80 AVZ AR 43 2015 8 2469-2479 |
allfields_unstemmed |
10.1109/TPS.2015.2431973 doi PQ20160617 (DE-627)OLC1966516223 (DE-599)GBVOLC1966516223 (PRQ)g1926-16ede44091de838a0871403a5ae94f68ae5db9483a4cc3e7c34c52592cbe6db10 (KEY)0058744320150000043000802469calculationoftheequilibriumevolutionofthezapflowzp DE-627 ger DE-627 rakwb eng 530 DNB 33.80 bkl Knecht, Sean D verfasserin aut Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period. plasma heating Measurement by laser beam Laser beams Probes Z-pinch Equilibrium evolution Density measurement pinch oscillation Conductors Plasmas Interferometry Magnetic fields Heat conductivity Plasma physics Equilibrium Interferometers Research Pinch effect (Physics) Usage Golingo, Raymond P oth Nelson, Brian A oth Shumlak, Uri oth Enthalten in IEEE transactions on plasma science New York, NY : IEEE, 1973 43(2015), 8, Seite 2469-2479 (DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 0093-3813 nnns volume:43 year:2015 number:8 pages:2469-2479 http://dx.doi.org/10.1109/TPS.2015.2431973 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7112530 http://search.proquest.com/docview/1703586351 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.80 AVZ AR 43 2015 8 2469-2479 |
allfieldsGer |
10.1109/TPS.2015.2431973 doi PQ20160617 (DE-627)OLC1966516223 (DE-599)GBVOLC1966516223 (PRQ)g1926-16ede44091de838a0871403a5ae94f68ae5db9483a4cc3e7c34c52592cbe6db10 (KEY)0058744320150000043000802469calculationoftheequilibriumevolutionofthezapflowzp DE-627 ger DE-627 rakwb eng 530 DNB 33.80 bkl Knecht, Sean D verfasserin aut Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period. plasma heating Measurement by laser beam Laser beams Probes Z-pinch Equilibrium evolution Density measurement pinch oscillation Conductors Plasmas Interferometry Magnetic fields Heat conductivity Plasma physics Equilibrium Interferometers Research Pinch effect (Physics) Usage Golingo, Raymond P oth Nelson, Brian A oth Shumlak, Uri oth Enthalten in IEEE transactions on plasma science New York, NY : IEEE, 1973 43(2015), 8, Seite 2469-2479 (DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 0093-3813 nnns volume:43 year:2015 number:8 pages:2469-2479 http://dx.doi.org/10.1109/TPS.2015.2431973 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7112530 http://search.proquest.com/docview/1703586351 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.80 AVZ AR 43 2015 8 2469-2479 |
allfieldsSound |
10.1109/TPS.2015.2431973 doi PQ20160617 (DE-627)OLC1966516223 (DE-599)GBVOLC1966516223 (PRQ)g1926-16ede44091de838a0871403a5ae94f68ae5db9483a4cc3e7c34c52592cbe6db10 (KEY)0058744320150000043000802469calculationoftheequilibriumevolutionofthezapflowzp DE-627 ger DE-627 rakwb eng 530 DNB 33.80 bkl Knecht, Sean D verfasserin aut Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period. plasma heating Measurement by laser beam Laser beams Probes Z-pinch Equilibrium evolution Density measurement pinch oscillation Conductors Plasmas Interferometry Magnetic fields Heat conductivity Plasma physics Equilibrium Interferometers Research Pinch effect (Physics) Usage Golingo, Raymond P oth Nelson, Brian A oth Shumlak, Uri oth Enthalten in IEEE transactions on plasma science New York, NY : IEEE, 1973 43(2015), 8, Seite 2469-2479 (DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 0093-3813 nnns volume:43 year:2015 number:8 pages:2469-2479 http://dx.doi.org/10.1109/TPS.2015.2431973 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7112530 http://search.proquest.com/docview/1703586351 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 33.80 AVZ AR 43 2015 8 2469-2479 |
language |
English |
source |
Enthalten in IEEE transactions on plasma science 43(2015), 8, Seite 2469-2479 volume:43 year:2015 number:8 pages:2469-2479 |
sourceStr |
Enthalten in IEEE transactions on plasma science 43(2015), 8, Seite 2469-2479 volume:43 year:2015 number:8 pages:2469-2479 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
plasma heating Measurement by laser beam Laser beams Probes Z-pinch Equilibrium evolution Density measurement pinch oscillation Conductors Plasmas Interferometry Magnetic fields Heat conductivity Plasma physics Equilibrium Interferometers Research Pinch effect (Physics) Usage |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on plasma science |
authorswithroles_txt_mv |
Knecht, Sean D @@aut@@ Golingo, Raymond P @@oth@@ Nelson, Brian A @@oth@@ Shumlak, Uri @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129391379 |
dewey-sort |
3530 |
id |
OLC1966516223 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1966516223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221143504.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPS.2015.2431973</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1966516223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1966516223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g1926-16ede44091de838a0871403a5ae94f68ae5db9483a4cc3e7c34c52592cbe6db10</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0058744320150000043000802469calculationoftheequilibriumevolutionofthezapflowzp</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knecht, Sean D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasma heating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement by laser beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser beams</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Z-pinch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pinch oscillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interferometers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pinch effect (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Golingo, Raymond P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, Brian A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shumlak, Uri</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on plasma science</subfield><subfield code="d">New York, NY : IEEE, 1973</subfield><subfield code="g">43(2015), 8, Seite 2469-2479</subfield><subfield code="w">(DE-627)129391379</subfield><subfield code="w">(DE-600)184848-3</subfield><subfield code="w">(DE-576)014776553</subfield><subfield code="x">0093-3813</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:2469-2479</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPS.2015.2431973</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7112530</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1703586351</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2015</subfield><subfield code="e">8</subfield><subfield code="h">2469-2479</subfield></datafield></record></collection>
|
author |
Knecht, Sean D |
spellingShingle |
Knecht, Sean D ddc 530 bkl 33.80 misc plasma heating misc Measurement by laser beam misc Laser beams misc Probes misc Z-pinch misc Equilibrium evolution misc Density measurement misc pinch oscillation misc Conductors misc Plasmas misc Interferometry misc Magnetic fields misc Heat conductivity misc Plasma physics misc Equilibrium misc Interferometers misc Research misc Pinch effect (Physics) misc Usage Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer |
authorStr |
Knecht, Sean D |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129391379 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0093-3813 |
topic_title |
530 DNB 33.80 bkl Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer plasma heating Measurement by laser beam Laser beams Probes Z-pinch Equilibrium evolution Density measurement pinch oscillation Conductors Plasmas Interferometry Magnetic fields Heat conductivity Plasma physics Equilibrium Interferometers Research Pinch effect (Physics) Usage |
topic |
ddc 530 bkl 33.80 misc plasma heating misc Measurement by laser beam misc Laser beams misc Probes misc Z-pinch misc Equilibrium evolution misc Density measurement misc pinch oscillation misc Conductors misc Plasmas misc Interferometry misc Magnetic fields misc Heat conductivity misc Plasma physics misc Equilibrium misc Interferometers misc Research misc Pinch effect (Physics) misc Usage |
topic_unstemmed |
ddc 530 bkl 33.80 misc plasma heating misc Measurement by laser beam misc Laser beams misc Probes misc Z-pinch misc Equilibrium evolution misc Density measurement misc pinch oscillation misc Conductors misc Plasmas misc Interferometry misc Magnetic fields misc Heat conductivity misc Plasma physics misc Equilibrium misc Interferometers misc Research misc Pinch effect (Physics) misc Usage |
topic_browse |
ddc 530 bkl 33.80 misc plasma heating misc Measurement by laser beam misc Laser beams misc Probes misc Z-pinch misc Equilibrium evolution misc Density measurement misc pinch oscillation misc Conductors misc Plasmas misc Interferometry misc Magnetic fields misc Heat conductivity misc Plasma physics misc Equilibrium misc Interferometers misc Research misc Pinch effect (Physics) misc Usage |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
r p g rp rpg b a n ba ban u s us |
hierarchy_parent_title |
IEEE transactions on plasma science |
hierarchy_parent_id |
129391379 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
IEEE transactions on plasma science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129391379 (DE-600)184848-3 (DE-576)014776553 |
title |
Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer |
ctrlnum |
(DE-627)OLC1966516223 (DE-599)GBVOLC1966516223 (PRQ)g1926-16ede44091de838a0871403a5ae94f68ae5db9483a4cc3e7c34c52592cbe6db10 (KEY)0058744320150000043000802469calculationoftheequilibriumevolutionofthezapflowzp |
title_full |
Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer |
author_sort |
Knecht, Sean D |
journal |
IEEE transactions on plasma science |
journalStr |
IEEE transactions on plasma science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
2469 |
author_browse |
Knecht, Sean D |
container_volume |
43 |
class |
530 DNB 33.80 bkl |
format_se |
Aufsätze |
author-letter |
Knecht, Sean D |
doi_str_mv |
10.1109/TPS.2015.2431973 |
dewey-full |
530 |
title_sort |
calculation of the equilibrium evolution of the zap flow z -pinch using a four-chord interferometer |
title_auth |
Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer |
abstract |
A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period. |
abstractGer |
A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period. |
abstract_unstemmed |
A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
8 |
title_short |
Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer |
url |
http://dx.doi.org/10.1109/TPS.2015.2431973 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7112530 http://search.proquest.com/docview/1703586351 |
remote_bool |
false |
author2 |
Golingo, Raymond P Nelson, Brian A Shumlak, Uri |
author2Str |
Golingo, Raymond P Nelson, Brian A Shumlak, Uri |
ppnlink |
129391379 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TPS.2015.2431973 |
up_date |
2024-07-03T21:53:33.207Z |
_version_ |
1803596451771580416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1966516223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221143504.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TPS.2015.2431973</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1966516223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1966516223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g1926-16ede44091de838a0871403a5ae94f68ae5db9483a4cc3e7c34c52592cbe6db10</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0058744320150000043000802469calculationoftheequilibriumevolutionofthezapflowzp</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.80</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knecht, Sean D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculation of the Equilibrium Evolution of the ZaP Flow Z -Pinch Using a Four-Chord Interferometer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A four-chord interferometer and measurements from an array of surface-mounted magnetic probes were used in conjunction with equations of radial heat conduction and radial force balance to calculate the equilibrium evolution of a pinch plasma in the ZaP flow <inline-formula> <tex-math notation="LaTeX">Z </tex-math></inline-formula>-pinch. A multiple shooting method was used to solve the nonlinear coupled differential equation system, with ohmic heating and bremsstrahlung radiation as sources and sinks, respectively. Data from a single ZaP pulse are reported including profiles of magnetic field and temperature and their evolution. Profiles are dominated by high thermal conductivity near the axis which quickly decreases with radius. This is due to the plasma being weakly magnetized near the axis which increases thermal conductivity and flattens the temperature profile, but strongly magnetized near the characteristic radius, significantly reducing thermal conductivity and resulting in a large temperature gradient. The equilibrium evolution indicates that plasmas in ZaP heat and compress with increasing current as a result of magnetic compression during the quiescent period.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasma heating</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement by laser beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser beams</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Z-pinch</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Density measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pinch oscillation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interferometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equilibrium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interferometers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pinch effect (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Golingo, Raymond P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelson, Brian A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shumlak, Uri</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on plasma science</subfield><subfield code="d">New York, NY : IEEE, 1973</subfield><subfield code="g">43(2015), 8, Seite 2469-2479</subfield><subfield code="w">(DE-627)129391379</subfield><subfield code="w">(DE-600)184848-3</subfield><subfield code="w">(DE-576)014776553</subfield><subfield code="x">0093-3813</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:8</subfield><subfield code="g">pages:2469-2479</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TPS.2015.2431973</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7112530</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1703586351</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.80</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2015</subfield><subfield code="e">8</subfield><subfield code="h">2469-2479</subfield></datafield></record></collection>
|
score |
7.399148 |