Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials
This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizat...
Ausführliche Beschreibung
Autor*in: |
Romano, Daniele [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
partial element equivalent circuit (PEEC) method quasistatic partial element equivalent circuit models |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on magnetics - New York, NY : IEEE, 1965, 51(2015), 7, Seite 1-15 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2015 ; number:7 ; pages:1-15 |
Links: |
---|
DOI / URN: |
10.1109/TMAG.2014.2385662 |
---|
Katalog-ID: |
OLC1966660847 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1966660847 | ||
003 | DE-627 | ||
005 | 20220223135052.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TMAG.2014.2385662 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1966660847 | ||
035 | |a (DE-599)GBVOLC1966660847 | ||
035 | |a (PRQ)c2630-11a59ea637be8e8fff2d50158960305736604ffad32166d2eecde8dcd55447ca0 | ||
035 | |a (KEY)0061452120150000051000700001quasistaticpartialelementequivalentcircuitmodelsof | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 33.75 |2 bkl | ||
084 | |a 33.16 |2 bkl | ||
100 | 1 | |a Romano, Daniele |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature. | ||
650 | 4 | |a magnetic flux | |
650 | 4 | |a Equations | |
650 | 4 | |a linear magnetic materials | |
650 | 4 | |a Integrated circuit modeling | |
650 | 4 | |a partial element equivalent circuit (PEEC) method | |
650 | 4 | |a Mathematical model | |
650 | 4 | |a rigorous analytical formulas | |
650 | 4 | |a magnetic material modeling | |
650 | 4 | |a quasistatic partial element equivalent circuit models | |
650 | 4 | |a Manhattan-type discretizations | |
650 | 4 | |a Magnetization | |
650 | 4 | |a Magnetic materials | |
650 | 4 | |a magnetisation | |
650 | 4 | |a Equivalent circuits | |
650 | 4 | |a magnetization densities | |
650 | 4 | |a magnetic fields | |
650 | 4 | |a Integral equations | |
650 | 4 | |a SPICE-like circuit solver | |
650 | 4 | |a flux density | |
650 | 4 | |a Linear regression models | |
650 | 4 | |a Linear models (Statistics) | |
650 | 4 | |a Usage | |
650 | 4 | |a Models | |
700 | 1 | |a Antonini, Giulio |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on magnetics |d New York, NY : IEEE, 1965 |g 51(2015), 7, Seite 1-15 |w (DE-627)129602078 |w (DE-600)241508-2 |w (DE-576)015095789 |x 0018-9464 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2015 |g number:7 |g pages:1-15 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TMAG.2014.2385662 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6995969 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1694450332 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
936 | b | k | |a 33.75 |q AVZ |
936 | b | k | |a 33.16 |q AVZ |
951 | |a AR | ||
952 | |d 51 |j 2015 |e 7 |h 1-15 |
author_variant |
d r dr |
---|---|
matchkey_str |
article:00189464:2015----::ussaiprillmneuvlncrutoesfie |
hierarchy_sort_str |
2015 |
bklnumber |
33.75 33.16 |
publishDate |
2015 |
allfields |
10.1109/TMAG.2014.2385662 doi PQ20160617 (DE-627)OLC1966660847 (DE-599)GBVOLC1966660847 (PRQ)c2630-11a59ea637be8e8fff2d50158960305736604ffad32166d2eecde8dcd55447ca0 (KEY)0061452120150000051000700001quasistaticpartialelementequivalentcircuitmodelsof DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Romano, Daniele verfasserin aut Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature. magnetic flux Equations linear magnetic materials Integrated circuit modeling partial element equivalent circuit (PEEC) method Mathematical model rigorous analytical formulas magnetic material modeling quasistatic partial element equivalent circuit models Manhattan-type discretizations Magnetization Magnetic materials magnetisation Equivalent circuits magnetization densities magnetic fields Integral equations SPICE-like circuit solver flux density Linear regression models Linear models (Statistics) Usage Models Antonini, Giulio oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 51(2015), 7, Seite 1-15 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:51 year:2015 number:7 pages:1-15 http://dx.doi.org/10.1109/TMAG.2014.2385662 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6995969 http://search.proquest.com/docview/1694450332 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 33.75 AVZ 33.16 AVZ AR 51 2015 7 1-15 |
spelling |
10.1109/TMAG.2014.2385662 doi PQ20160617 (DE-627)OLC1966660847 (DE-599)GBVOLC1966660847 (PRQ)c2630-11a59ea637be8e8fff2d50158960305736604ffad32166d2eecde8dcd55447ca0 (KEY)0061452120150000051000700001quasistaticpartialelementequivalentcircuitmodelsof DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Romano, Daniele verfasserin aut Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature. magnetic flux Equations linear magnetic materials Integrated circuit modeling partial element equivalent circuit (PEEC) method Mathematical model rigorous analytical formulas magnetic material modeling quasistatic partial element equivalent circuit models Manhattan-type discretizations Magnetization Magnetic materials magnetisation Equivalent circuits magnetization densities magnetic fields Integral equations SPICE-like circuit solver flux density Linear regression models Linear models (Statistics) Usage Models Antonini, Giulio oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 51(2015), 7, Seite 1-15 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:51 year:2015 number:7 pages:1-15 http://dx.doi.org/10.1109/TMAG.2014.2385662 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6995969 http://search.proquest.com/docview/1694450332 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 33.75 AVZ 33.16 AVZ AR 51 2015 7 1-15 |
allfields_unstemmed |
10.1109/TMAG.2014.2385662 doi PQ20160617 (DE-627)OLC1966660847 (DE-599)GBVOLC1966660847 (PRQ)c2630-11a59ea637be8e8fff2d50158960305736604ffad32166d2eecde8dcd55447ca0 (KEY)0061452120150000051000700001quasistaticpartialelementequivalentcircuitmodelsof DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Romano, Daniele verfasserin aut Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature. magnetic flux Equations linear magnetic materials Integrated circuit modeling partial element equivalent circuit (PEEC) method Mathematical model rigorous analytical formulas magnetic material modeling quasistatic partial element equivalent circuit models Manhattan-type discretizations Magnetization Magnetic materials magnetisation Equivalent circuits magnetization densities magnetic fields Integral equations SPICE-like circuit solver flux density Linear regression models Linear models (Statistics) Usage Models Antonini, Giulio oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 51(2015), 7, Seite 1-15 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:51 year:2015 number:7 pages:1-15 http://dx.doi.org/10.1109/TMAG.2014.2385662 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6995969 http://search.proquest.com/docview/1694450332 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 33.75 AVZ 33.16 AVZ AR 51 2015 7 1-15 |
allfieldsGer |
10.1109/TMAG.2014.2385662 doi PQ20160617 (DE-627)OLC1966660847 (DE-599)GBVOLC1966660847 (PRQ)c2630-11a59ea637be8e8fff2d50158960305736604ffad32166d2eecde8dcd55447ca0 (KEY)0061452120150000051000700001quasistaticpartialelementequivalentcircuitmodelsof DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Romano, Daniele verfasserin aut Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature. magnetic flux Equations linear magnetic materials Integrated circuit modeling partial element equivalent circuit (PEEC) method Mathematical model rigorous analytical formulas magnetic material modeling quasistatic partial element equivalent circuit models Manhattan-type discretizations Magnetization Magnetic materials magnetisation Equivalent circuits magnetization densities magnetic fields Integral equations SPICE-like circuit solver flux density Linear regression models Linear models (Statistics) Usage Models Antonini, Giulio oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 51(2015), 7, Seite 1-15 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:51 year:2015 number:7 pages:1-15 http://dx.doi.org/10.1109/TMAG.2014.2385662 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6995969 http://search.proquest.com/docview/1694450332 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 33.75 AVZ 33.16 AVZ AR 51 2015 7 1-15 |
allfieldsSound |
10.1109/TMAG.2014.2385662 doi PQ20160617 (DE-627)OLC1966660847 (DE-599)GBVOLC1966660847 (PRQ)c2630-11a59ea637be8e8fff2d50158960305736604ffad32166d2eecde8dcd55447ca0 (KEY)0061452120150000051000700001quasistaticpartialelementequivalentcircuitmodelsof DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Romano, Daniele verfasserin aut Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature. magnetic flux Equations linear magnetic materials Integrated circuit modeling partial element equivalent circuit (PEEC) method Mathematical model rigorous analytical formulas magnetic material modeling quasistatic partial element equivalent circuit models Manhattan-type discretizations Magnetization Magnetic materials magnetisation Equivalent circuits magnetization densities magnetic fields Integral equations SPICE-like circuit solver flux density Linear regression models Linear models (Statistics) Usage Models Antonini, Giulio oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 51(2015), 7, Seite 1-15 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:51 year:2015 number:7 pages:1-15 http://dx.doi.org/10.1109/TMAG.2014.2385662 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6995969 http://search.proquest.com/docview/1694450332 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 33.75 AVZ 33.16 AVZ AR 51 2015 7 1-15 |
language |
English |
source |
Enthalten in IEEE transactions on magnetics 51(2015), 7, Seite 1-15 volume:51 year:2015 number:7 pages:1-15 |
sourceStr |
Enthalten in IEEE transactions on magnetics 51(2015), 7, Seite 1-15 volume:51 year:2015 number:7 pages:1-15 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
magnetic flux Equations linear magnetic materials Integrated circuit modeling partial element equivalent circuit (PEEC) method Mathematical model rigorous analytical formulas magnetic material modeling quasistatic partial element equivalent circuit models Manhattan-type discretizations Magnetization Magnetic materials magnetisation Equivalent circuits magnetization densities magnetic fields Integral equations SPICE-like circuit solver flux density Linear regression models Linear models (Statistics) Usage Models |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on magnetics |
authorswithroles_txt_mv |
Romano, Daniele @@aut@@ Antonini, Giulio @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129602078 |
dewey-sort |
3620 |
id |
OLC1966660847 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1966660847</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223135052.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TMAG.2014.2385662</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1966660847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1966660847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2630-11a59ea637be8e8fff2d50158960305736604ffad32166d2eecde8dcd55447ca0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0061452120150000051000700001quasistaticpartialelementequivalentcircuitmodelsof</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Romano, Daniele</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear magnetic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuit modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partial element equivalent circuit (PEEC) method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rigorous analytical formulas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic material modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasistatic partial element equivalent circuit models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manhattan-type discretizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equivalent circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetization densities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPICE-like circuit solver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flux density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear regression models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear models (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antonini, Giulio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on magnetics</subfield><subfield code="d">New York, NY : IEEE, 1965</subfield><subfield code="g">51(2015), 7, Seite 1-15</subfield><subfield code="w">(DE-627)129602078</subfield><subfield code="w">(DE-600)241508-2</subfield><subfield code="w">(DE-576)015095789</subfield><subfield code="x">0018-9464</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1-15</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TMAG.2014.2385662</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6995969</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1694450332</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.75</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="h">1-15</subfield></datafield></record></collection>
|
author |
Romano, Daniele |
spellingShingle |
Romano, Daniele ddc 620 bkl 33.75 bkl 33.16 misc magnetic flux misc Equations misc linear magnetic materials misc Integrated circuit modeling misc partial element equivalent circuit (PEEC) method misc Mathematical model misc rigorous analytical formulas misc magnetic material modeling misc quasistatic partial element equivalent circuit models misc Manhattan-type discretizations misc Magnetization misc Magnetic materials misc magnetisation misc Equivalent circuits misc magnetization densities misc magnetic fields misc Integral equations misc SPICE-like circuit solver misc flux density misc Linear regression models misc Linear models (Statistics) misc Usage misc Models Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials |
authorStr |
Romano, Daniele |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129602078 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9464 |
topic_title |
620 DNB 33.75 bkl 33.16 bkl Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials magnetic flux Equations linear magnetic materials Integrated circuit modeling partial element equivalent circuit (PEEC) method Mathematical model rigorous analytical formulas magnetic material modeling quasistatic partial element equivalent circuit models Manhattan-type discretizations Magnetization Magnetic materials magnetisation Equivalent circuits magnetization densities magnetic fields Integral equations SPICE-like circuit solver flux density Linear regression models Linear models (Statistics) Usage Models |
topic |
ddc 620 bkl 33.75 bkl 33.16 misc magnetic flux misc Equations misc linear magnetic materials misc Integrated circuit modeling misc partial element equivalent circuit (PEEC) method misc Mathematical model misc rigorous analytical formulas misc magnetic material modeling misc quasistatic partial element equivalent circuit models misc Manhattan-type discretizations misc Magnetization misc Magnetic materials misc magnetisation misc Equivalent circuits misc magnetization densities misc magnetic fields misc Integral equations misc SPICE-like circuit solver misc flux density misc Linear regression models misc Linear models (Statistics) misc Usage misc Models |
topic_unstemmed |
ddc 620 bkl 33.75 bkl 33.16 misc magnetic flux misc Equations misc linear magnetic materials misc Integrated circuit modeling misc partial element equivalent circuit (PEEC) method misc Mathematical model misc rigorous analytical formulas misc magnetic material modeling misc quasistatic partial element equivalent circuit models misc Manhattan-type discretizations misc Magnetization misc Magnetic materials misc magnetisation misc Equivalent circuits misc magnetization densities misc magnetic fields misc Integral equations misc SPICE-like circuit solver misc flux density misc Linear regression models misc Linear models (Statistics) misc Usage misc Models |
topic_browse |
ddc 620 bkl 33.75 bkl 33.16 misc magnetic flux misc Equations misc linear magnetic materials misc Integrated circuit modeling misc partial element equivalent circuit (PEEC) method misc Mathematical model misc rigorous analytical formulas misc magnetic material modeling misc quasistatic partial element equivalent circuit models misc Manhattan-type discretizations misc Magnetization misc Magnetic materials misc magnetisation misc Equivalent circuits misc magnetization densities misc magnetic fields misc Integral equations misc SPICE-like circuit solver misc flux density misc Linear regression models misc Linear models (Statistics) misc Usage misc Models |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
g a ga |
hierarchy_parent_title |
IEEE transactions on magnetics |
hierarchy_parent_id |
129602078 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on magnetics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 |
title |
Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials |
ctrlnum |
(DE-627)OLC1966660847 (DE-599)GBVOLC1966660847 (PRQ)c2630-11a59ea637be8e8fff2d50158960305736604ffad32166d2eecde8dcd55447ca0 (KEY)0061452120150000051000700001quasistaticpartialelementequivalentcircuitmodelsof |
title_full |
Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials |
author_sort |
Romano, Daniele |
journal |
IEEE transactions on magnetics |
journalStr |
IEEE transactions on magnetics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Romano, Daniele |
container_volume |
51 |
class |
620 DNB 33.75 bkl 33.16 bkl |
format_se |
Aufsätze |
author-letter |
Romano, Daniele |
doi_str_mv |
10.1109/TMAG.2014.2385662 |
dewey-full |
620 |
title_sort |
quasi-static partial element equivalent circuit models of linear magnetic materials |
title_auth |
Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials |
abstract |
This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature. |
abstractGer |
This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature. |
abstract_unstemmed |
This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 |
container_issue |
7 |
title_short |
Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials |
url |
http://dx.doi.org/10.1109/TMAG.2014.2385662 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6995969 http://search.proquest.com/docview/1694450332 |
remote_bool |
false |
author2 |
Antonini, Giulio |
author2Str |
Antonini, Giulio |
ppnlink |
129602078 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TMAG.2014.2385662 |
up_date |
2024-07-03T22:22:22.857Z |
_version_ |
1803598265432670208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1966660847</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223135052.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TMAG.2014.2385662</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1966660847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1966660847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2630-11a59ea637be8e8fff2d50158960305736604ffad32166d2eecde8dcd55447ca0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0061452120150000051000700001quasistaticpartialelementequivalentcircuitmodelsof</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Romano, Daniele</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-Static Partial Element Equivalent Circuit Models of Linear Magnetic Materials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a 3-D partial element equivalent circuit (PEEC) model of linear magnetic materials under the quasi-static hypothesis. Rigorous analytical formulas are proposed for integrals accounting for flux density due to both current and magnetization densities for Manhattan-type discretizations. Such closed-form formulas remove the singularities exhibited by existing formulas and completely avoid numerical integration. The resulting model preserves the circuit interpretation of standard PEEC models and, thus, can be easily integrated in a SPICE-like circuit solver. Numerical results are presented showing that the proposed closed formulas outperform the numerical schemes and guarantee an excellent agreement with existing results available in the literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear magnetic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuit modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partial element equivalent circuit (PEEC) method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rigorous analytical formulas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic material modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quasistatic partial element equivalent circuit models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manhattan-type discretizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetisation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equivalent circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetization densities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SPICE-like circuit solver</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flux density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear regression models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear models (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antonini, Giulio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on magnetics</subfield><subfield code="d">New York, NY : IEEE, 1965</subfield><subfield code="g">51(2015), 7, Seite 1-15</subfield><subfield code="w">(DE-627)129602078</subfield><subfield code="w">(DE-600)241508-2</subfield><subfield code="w">(DE-576)015095789</subfield><subfield code="x">0018-9464</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:1-15</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TMAG.2014.2385662</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6995969</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1694450332</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.75</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="h">1-15</subfield></datafield></record></collection>
|
score |
7.39849 |