Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves
We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements we...
Ausführliche Beschreibung
Autor*in: |
Matthes, Patrick [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
perpendicular magnetic anisotropy perpendicular pseudospin valves |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on magnetics - New York, NY : IEEE, 1965, 51(2015), 1, Seite 1-4 |
---|---|
Übergeordnetes Werk: |
volume:51 ; year:2015 ; number:1 ; pages:1-4 |
Links: |
---|
DOI / URN: |
10.1109/TMAG.2014.2359871 |
---|
Katalog-ID: |
OLC1966669844 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1966669844 | ||
003 | DE-627 | ||
005 | 20220223135035.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TMAG.2014.2359871 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1966669844 | ||
035 | |a (DE-599)GBVOLC1966669844 | ||
035 | |a (PRQ)c2479-83d29bdfc913e37c3f634afe11143770d2b2124c842ae97bb72619055e8081ff0 | ||
035 | |a (KEY)0061452120150000051000100001magnetotransportpropertiesofperpendicularptcocucop | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 33.75 |2 bkl | ||
084 | |a 33.16 |2 bkl | ||
100 | 1 | |a Matthes, Patrick |e verfasserin |4 aut | |
245 | 1 | 0 | |a Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again. | ||
650 | 4 | |a Magnetic hysteresis | |
650 | 4 | |a spin valves | |
650 | 4 | |a current-in-plane geometry | |
650 | 4 | |a Temperature measurement | |
650 | 4 | |a cobalt | |
650 | 4 | |a van der Pauw method | |
650 | 4 | |a copper | |
650 | 4 | |a magnetisation reversal | |
650 | 4 | |a (Pt-Co)-Cu-(Co-Pt) | |
650 | 4 | |a Magnetostatics | |
650 | 4 | |a Magnetic domains | |
650 | 4 | |a spacer layer thickness | |
650 | 4 | |a magnetotransport | |
650 | 4 | |a magnetostatic interactions | |
650 | 4 | |a four point probe method | |
650 | 4 | |a perpendicular magnetic anisotropy | |
650 | 4 | |a platinum | |
650 | 4 | |a perpendicular pseudospin valves | |
650 | 4 | |a Magnetic multilayers | |
650 | 4 | |a GMR effect | |
650 | 4 | |a vertically correlated magnetic domains | |
650 | 4 | |a giant magnetoresistance | |
650 | 4 | |a magnetic reversal | |
650 | 4 | |a Magnetoresistance | |
650 | 4 | |a Anisotropy | |
650 | 4 | |a Magnetic properties | |
650 | 4 | |a Cobalt | |
650 | 4 | |a Analysis | |
650 | 4 | |a Copper | |
650 | 4 | |a Usage | |
650 | 4 | |a Thermal properties | |
700 | 1 | |a Arekapudi, Sri Sai Phani Kanth |4 oth | |
700 | 1 | |a Timmermann, Felix |4 oth | |
700 | 1 | |a Albrecht, Manfred |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on magnetics |d New York, NY : IEEE, 1965 |g 51(2015), 1, Seite 1-4 |w (DE-627)129602078 |w (DE-600)241508-2 |w (DE-576)015095789 |x 0018-9464 |7 nnns |
773 | 1 | 8 | |g volume:51 |g year:2015 |g number:1 |g pages:1-4 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TMAG.2014.2359871 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7029253 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1684186542 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
936 | b | k | |a 33.75 |q AVZ |
936 | b | k | |a 33.16 |q AVZ |
951 | |a AR | ||
952 | |d 51 |j 2015 |e 1 |h 1-4 |
author_variant |
p m pm |
---|---|
matchkey_str |
article:00189464:2015----::anttasotrprisfepniuapccc |
hierarchy_sort_str |
2015 |
bklnumber |
33.75 33.16 |
publishDate |
2015 |
allfields |
10.1109/TMAG.2014.2359871 doi PQ20160617 (DE-627)OLC1966669844 (DE-599)GBVOLC1966669844 (PRQ)c2479-83d29bdfc913e37c3f634afe11143770d2b2124c842ae97bb72619055e8081ff0 (KEY)0061452120150000051000100001magnetotransportpropertiesofperpendicularptcocucop DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Matthes, Patrick verfasserin aut Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again. Magnetic hysteresis spin valves current-in-plane geometry Temperature measurement cobalt van der Pauw method copper magnetisation reversal (Pt-Co)-Cu-(Co-Pt) Magnetostatics Magnetic domains spacer layer thickness magnetotransport magnetostatic interactions four point probe method perpendicular magnetic anisotropy platinum perpendicular pseudospin valves Magnetic multilayers GMR effect vertically correlated magnetic domains giant magnetoresistance magnetic reversal Magnetoresistance Anisotropy Magnetic properties Cobalt Analysis Copper Usage Thermal properties Arekapudi, Sri Sai Phani Kanth oth Timmermann, Felix oth Albrecht, Manfred oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 51(2015), 1, Seite 1-4 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:51 year:2015 number:1 pages:1-4 http://dx.doi.org/10.1109/TMAG.2014.2359871 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7029253 http://search.proquest.com/docview/1684186542 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 33.75 AVZ 33.16 AVZ AR 51 2015 1 1-4 |
spelling |
10.1109/TMAG.2014.2359871 doi PQ20160617 (DE-627)OLC1966669844 (DE-599)GBVOLC1966669844 (PRQ)c2479-83d29bdfc913e37c3f634afe11143770d2b2124c842ae97bb72619055e8081ff0 (KEY)0061452120150000051000100001magnetotransportpropertiesofperpendicularptcocucop DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Matthes, Patrick verfasserin aut Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again. Magnetic hysteresis spin valves current-in-plane geometry Temperature measurement cobalt van der Pauw method copper magnetisation reversal (Pt-Co)-Cu-(Co-Pt) Magnetostatics Magnetic domains spacer layer thickness magnetotransport magnetostatic interactions four point probe method perpendicular magnetic anisotropy platinum perpendicular pseudospin valves Magnetic multilayers GMR effect vertically correlated magnetic domains giant magnetoresistance magnetic reversal Magnetoresistance Anisotropy Magnetic properties Cobalt Analysis Copper Usage Thermal properties Arekapudi, Sri Sai Phani Kanth oth Timmermann, Felix oth Albrecht, Manfred oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 51(2015), 1, Seite 1-4 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:51 year:2015 number:1 pages:1-4 http://dx.doi.org/10.1109/TMAG.2014.2359871 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7029253 http://search.proquest.com/docview/1684186542 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 33.75 AVZ 33.16 AVZ AR 51 2015 1 1-4 |
allfields_unstemmed |
10.1109/TMAG.2014.2359871 doi PQ20160617 (DE-627)OLC1966669844 (DE-599)GBVOLC1966669844 (PRQ)c2479-83d29bdfc913e37c3f634afe11143770d2b2124c842ae97bb72619055e8081ff0 (KEY)0061452120150000051000100001magnetotransportpropertiesofperpendicularptcocucop DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Matthes, Patrick verfasserin aut Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again. Magnetic hysteresis spin valves current-in-plane geometry Temperature measurement cobalt van der Pauw method copper magnetisation reversal (Pt-Co)-Cu-(Co-Pt) Magnetostatics Magnetic domains spacer layer thickness magnetotransport magnetostatic interactions four point probe method perpendicular magnetic anisotropy platinum perpendicular pseudospin valves Magnetic multilayers GMR effect vertically correlated magnetic domains giant magnetoresistance magnetic reversal Magnetoresistance Anisotropy Magnetic properties Cobalt Analysis Copper Usage Thermal properties Arekapudi, Sri Sai Phani Kanth oth Timmermann, Felix oth Albrecht, Manfred oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 51(2015), 1, Seite 1-4 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:51 year:2015 number:1 pages:1-4 http://dx.doi.org/10.1109/TMAG.2014.2359871 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7029253 http://search.proquest.com/docview/1684186542 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 33.75 AVZ 33.16 AVZ AR 51 2015 1 1-4 |
allfieldsGer |
10.1109/TMAG.2014.2359871 doi PQ20160617 (DE-627)OLC1966669844 (DE-599)GBVOLC1966669844 (PRQ)c2479-83d29bdfc913e37c3f634afe11143770d2b2124c842ae97bb72619055e8081ff0 (KEY)0061452120150000051000100001magnetotransportpropertiesofperpendicularptcocucop DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Matthes, Patrick verfasserin aut Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again. Magnetic hysteresis spin valves current-in-plane geometry Temperature measurement cobalt van der Pauw method copper magnetisation reversal (Pt-Co)-Cu-(Co-Pt) Magnetostatics Magnetic domains spacer layer thickness magnetotransport magnetostatic interactions four point probe method perpendicular magnetic anisotropy platinum perpendicular pseudospin valves Magnetic multilayers GMR effect vertically correlated magnetic domains giant magnetoresistance magnetic reversal Magnetoresistance Anisotropy Magnetic properties Cobalt Analysis Copper Usage Thermal properties Arekapudi, Sri Sai Phani Kanth oth Timmermann, Felix oth Albrecht, Manfred oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 51(2015), 1, Seite 1-4 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:51 year:2015 number:1 pages:1-4 http://dx.doi.org/10.1109/TMAG.2014.2359871 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7029253 http://search.proquest.com/docview/1684186542 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 33.75 AVZ 33.16 AVZ AR 51 2015 1 1-4 |
allfieldsSound |
10.1109/TMAG.2014.2359871 doi PQ20160617 (DE-627)OLC1966669844 (DE-599)GBVOLC1966669844 (PRQ)c2479-83d29bdfc913e37c3f634afe11143770d2b2124c842ae97bb72619055e8081ff0 (KEY)0061452120150000051000100001magnetotransportpropertiesofperpendicularptcocucop DE-627 ger DE-627 rakwb eng 620 DNB 33.75 bkl 33.16 bkl Matthes, Patrick verfasserin aut Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again. Magnetic hysteresis spin valves current-in-plane geometry Temperature measurement cobalt van der Pauw method copper magnetisation reversal (Pt-Co)-Cu-(Co-Pt) Magnetostatics Magnetic domains spacer layer thickness magnetotransport magnetostatic interactions four point probe method perpendicular magnetic anisotropy platinum perpendicular pseudospin valves Magnetic multilayers GMR effect vertically correlated magnetic domains giant magnetoresistance magnetic reversal Magnetoresistance Anisotropy Magnetic properties Cobalt Analysis Copper Usage Thermal properties Arekapudi, Sri Sai Phani Kanth oth Timmermann, Felix oth Albrecht, Manfred oth Enthalten in IEEE transactions on magnetics New York, NY : IEEE, 1965 51(2015), 1, Seite 1-4 (DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 0018-9464 nnns volume:51 year:2015 number:1 pages:1-4 http://dx.doi.org/10.1109/TMAG.2014.2359871 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7029253 http://search.proquest.com/docview/1684186542 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 33.75 AVZ 33.16 AVZ AR 51 2015 1 1-4 |
language |
English |
source |
Enthalten in IEEE transactions on magnetics 51(2015), 1, Seite 1-4 volume:51 year:2015 number:1 pages:1-4 |
sourceStr |
Enthalten in IEEE transactions on magnetics 51(2015), 1, Seite 1-4 volume:51 year:2015 number:1 pages:1-4 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Magnetic hysteresis spin valves current-in-plane geometry Temperature measurement cobalt van der Pauw method copper magnetisation reversal (Pt-Co)-Cu-(Co-Pt) Magnetostatics Magnetic domains spacer layer thickness magnetotransport magnetostatic interactions four point probe method perpendicular magnetic anisotropy platinum perpendicular pseudospin valves Magnetic multilayers GMR effect vertically correlated magnetic domains giant magnetoresistance magnetic reversal Magnetoresistance Anisotropy Magnetic properties Cobalt Analysis Copper Usage Thermal properties |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on magnetics |
authorswithroles_txt_mv |
Matthes, Patrick @@aut@@ Arekapudi, Sri Sai Phani Kanth @@oth@@ Timmermann, Felix @@oth@@ Albrecht, Manfred @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129602078 |
dewey-sort |
3620 |
id |
OLC1966669844 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1966669844</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223135035.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TMAG.2014.2359871</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1966669844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1966669844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2479-83d29bdfc913e37c3f634afe11143770d2b2124c842ae97bb72619055e8081ff0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0061452120150000051000100001magnetotransportpropertiesofperpendicularptcocucop</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matthes, Patrick</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic hysteresis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spin valves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">current-in-plane geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cobalt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">van der Pauw method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">copper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetisation reversal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(Pt-Co)-Cu-(Co-Pt)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetostatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spacer layer thickness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetotransport</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetostatic interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four point probe method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perpendicular magnetic anisotropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">platinum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perpendicular pseudospin valves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic multilayers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GMR effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vertically correlated magnetic domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">giant magnetoresistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic reversal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetoresistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cobalt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arekapudi, Sri Sai Phani Kanth</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Timmermann, Felix</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albrecht, Manfred</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on magnetics</subfield><subfield code="d">New York, NY : IEEE, 1965</subfield><subfield code="g">51(2015), 1, Seite 1-4</subfield><subfield code="w">(DE-627)129602078</subfield><subfield code="w">(DE-600)241508-2</subfield><subfield code="w">(DE-576)015095789</subfield><subfield code="x">0018-9464</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1-4</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TMAG.2014.2359871</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7029253</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1684186542</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.75</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">1-4</subfield></datafield></record></collection>
|
author |
Matthes, Patrick |
spellingShingle |
Matthes, Patrick ddc 620 bkl 33.75 bkl 33.16 misc Magnetic hysteresis misc spin valves misc current-in-plane geometry misc Temperature measurement misc cobalt misc van der Pauw method misc copper misc magnetisation reversal misc (Pt-Co)-Cu-(Co-Pt) misc Magnetostatics misc Magnetic domains misc spacer layer thickness misc magnetotransport misc magnetostatic interactions misc four point probe method misc perpendicular magnetic anisotropy misc platinum misc perpendicular pseudospin valves misc Magnetic multilayers misc GMR effect misc vertically correlated magnetic domains misc giant magnetoresistance misc magnetic reversal misc Magnetoresistance misc Anisotropy misc Magnetic properties misc Cobalt misc Analysis misc Copper misc Usage misc Thermal properties Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves |
authorStr |
Matthes, Patrick |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129602078 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9464 |
topic_title |
620 DNB 33.75 bkl 33.16 bkl Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves Magnetic hysteresis spin valves current-in-plane geometry Temperature measurement cobalt van der Pauw method copper magnetisation reversal (Pt-Co)-Cu-(Co-Pt) Magnetostatics Magnetic domains spacer layer thickness magnetotransport magnetostatic interactions four point probe method perpendicular magnetic anisotropy platinum perpendicular pseudospin valves Magnetic multilayers GMR effect vertically correlated magnetic domains giant magnetoresistance magnetic reversal Magnetoresistance Anisotropy Magnetic properties Cobalt Analysis Copper Usage Thermal properties |
topic |
ddc 620 bkl 33.75 bkl 33.16 misc Magnetic hysteresis misc spin valves misc current-in-plane geometry misc Temperature measurement misc cobalt misc van der Pauw method misc copper misc magnetisation reversal misc (Pt-Co)-Cu-(Co-Pt) misc Magnetostatics misc Magnetic domains misc spacer layer thickness misc magnetotransport misc magnetostatic interactions misc four point probe method misc perpendicular magnetic anisotropy misc platinum misc perpendicular pseudospin valves misc Magnetic multilayers misc GMR effect misc vertically correlated magnetic domains misc giant magnetoresistance misc magnetic reversal misc Magnetoresistance misc Anisotropy misc Magnetic properties misc Cobalt misc Analysis misc Copper misc Usage misc Thermal properties |
topic_unstemmed |
ddc 620 bkl 33.75 bkl 33.16 misc Magnetic hysteresis misc spin valves misc current-in-plane geometry misc Temperature measurement misc cobalt misc van der Pauw method misc copper misc magnetisation reversal misc (Pt-Co)-Cu-(Co-Pt) misc Magnetostatics misc Magnetic domains misc spacer layer thickness misc magnetotransport misc magnetostatic interactions misc four point probe method misc perpendicular magnetic anisotropy misc platinum misc perpendicular pseudospin valves misc Magnetic multilayers misc GMR effect misc vertically correlated magnetic domains misc giant magnetoresistance misc magnetic reversal misc Magnetoresistance misc Anisotropy misc Magnetic properties misc Cobalt misc Analysis misc Copper misc Usage misc Thermal properties |
topic_browse |
ddc 620 bkl 33.75 bkl 33.16 misc Magnetic hysteresis misc spin valves misc current-in-plane geometry misc Temperature measurement misc cobalt misc van der Pauw method misc copper misc magnetisation reversal misc (Pt-Co)-Cu-(Co-Pt) misc Magnetostatics misc Magnetic domains misc spacer layer thickness misc magnetotransport misc magnetostatic interactions misc four point probe method misc perpendicular magnetic anisotropy misc platinum misc perpendicular pseudospin valves misc Magnetic multilayers misc GMR effect misc vertically correlated magnetic domains misc giant magnetoresistance misc magnetic reversal misc Magnetoresistance misc Anisotropy misc Magnetic properties misc Cobalt misc Analysis misc Copper misc Usage misc Thermal properties |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s s p k a sspk sspka f t ft m a ma |
hierarchy_parent_title |
IEEE transactions on magnetics |
hierarchy_parent_id |
129602078 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on magnetics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129602078 (DE-600)241508-2 (DE-576)015095789 |
title |
Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves |
ctrlnum |
(DE-627)OLC1966669844 (DE-599)GBVOLC1966669844 (PRQ)c2479-83d29bdfc913e37c3f634afe11143770d2b2124c842ae97bb72619055e8081ff0 (KEY)0061452120150000051000100001magnetotransportpropertiesofperpendicularptcocucop |
title_full |
Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves |
author_sort |
Matthes, Patrick |
journal |
IEEE transactions on magnetics |
journalStr |
IEEE transactions on magnetics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Matthes, Patrick |
container_volume |
51 |
class |
620 DNB 33.75 bkl 33.16 bkl |
format_se |
Aufsätze |
author-letter |
Matthes, Patrick |
doi_str_mv |
10.1109/TMAG.2014.2359871 |
dewey-full |
620 |
title_sort |
magnetotransport properties of perpendicular [pt/co]/cu/[co/pt] pseudo-spin-valves |
title_auth |
Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves |
abstract |
We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again. |
abstractGer |
We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again. |
abstract_unstemmed |
We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 |
container_issue |
1 |
title_short |
Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves |
url |
http://dx.doi.org/10.1109/TMAG.2014.2359871 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7029253 http://search.proquest.com/docview/1684186542 |
remote_bool |
false |
author2 |
Arekapudi, Sri Sai Phani Kanth Timmermann, Felix Albrecht, Manfred |
author2Str |
Arekapudi, Sri Sai Phani Kanth Timmermann, Felix Albrecht, Manfred |
ppnlink |
129602078 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TMAG.2014.2359871 |
up_date |
2024-07-03T22:24:53.840Z |
_version_ |
1803598423751917568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1966669844</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223135035.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TMAG.2014.2359871</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1966669844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1966669844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2479-83d29bdfc913e37c3f634afe11143770d2b2124c842ae97bb72619055e8081ff0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0061452120150000051000100001magnetotransportpropertiesofperpendicularptcocucop</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matthes, Patrick</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetotransport Properties of Perpendicular [Pt/Co]/Cu/[Co/Pt] Pseudo-Spin-Valves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We studied the giant magnetoresistance (GMR) effect in [Co/Pt] 4 /Co/Cu/Co/[Co/Pt] 4 pseudo-spin-valves with perpendicular magnetic anisotropy (PMA) and analyzed the impact of the Cu spacer layer thickness as well as the Co layer thickness at the Cu/Co interface. The magnetotransport measurements were carried out by a four-point probe method in current-in-plane geometry at room temperature and additionally by the van der Pauw method at low temperatures. The GMR ratio at room temperature can be almost doubled to ~1.5% by increasing the Co layer thickness to 10 Å at each side of the Cu spacer layer, while keeping all other thicknesses constant. Due to this relatively large single Co layer thickness, which reduces the perpendicular magnetic anisotropy, the magnetic reversal is driven by magnetostatic interactions, leading to the formation of vertically correlated magnetic domains. In addition, by tuning the PMA of both [Co/Pt] multilayers, the formation of magnetic domains in the soft layer can be achieved without affecting the hard layer, which stays uniformly magnetized, resulting in a GMR ratio of up to 1.6% at room temperature. Upon formation of vertically correlated domains, the GMR ratio will be reduced again.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic hysteresis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spin valves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">current-in-plane geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cobalt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">van der Pauw method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">copper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetisation reversal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(Pt-Co)-Cu-(Co-Pt)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetostatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spacer layer thickness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetotransport</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetostatic interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">four point probe method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perpendicular magnetic anisotropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">platinum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perpendicular pseudospin valves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic multilayers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GMR effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">vertically correlated magnetic domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">giant magnetoresistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic reversal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetoresistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anisotropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cobalt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Copper</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal properties</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arekapudi, Sri Sai Phani Kanth</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Timmermann, Felix</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albrecht, Manfred</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on magnetics</subfield><subfield code="d">New York, NY : IEEE, 1965</subfield><subfield code="g">51(2015), 1, Seite 1-4</subfield><subfield code="w">(DE-627)129602078</subfield><subfield code="w">(DE-600)241508-2</subfield><subfield code="w">(DE-576)015095789</subfield><subfield code="x">0018-9464</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:51</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1-4</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TMAG.2014.2359871</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7029253</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1684186542</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.75</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">51</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="h">1-4</subfield></datafield></record></collection>
|
score |
7.4007444 |