Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity
A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less th...
Ausführliche Beschreibung
Autor*in: |
Terada, Kenjiro [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal for numerical methods in engineering - Chichester [u.a.] : Wiley, 1969, 105(2016), 2, Seite 111-137 |
---|---|
Übergeordnetes Werk: |
volume:105 ; year:2016 ; number:2 ; pages:111-137 |
Links: |
---|
DOI / URN: |
10.1002/nme.4970 |
---|
Katalog-ID: |
OLC1966942311 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1966942311 | ||
003 | DE-627 | ||
005 | 20220220112554.0 | ||
007 | tu | ||
008 | 160206s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/nme.4970 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1966942311 | ||
035 | |a (DE-599)GBVOLC1966942311 | ||
035 | |a (PRQ)p1190-892f45a25666d456d2f5239687ccbbbfea768f044e0b9c0e8d6b5dbbc631cab93 | ||
035 | |a (KEY)0065660720160000105000200111numericalplatetestingforlineartwoscaleanalysesofco | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
084 | |a 50.03 |2 bkl | ||
100 | 1 | |a Terada, Kenjiro |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. | ||
650 | 4 | |a multiscale analysis | |
650 | 4 | |a composite plate | |
650 | 4 | |a numerical plate testing | |
650 | 4 | |a homogenization | |
700 | 1 | |a Hirayama, Norio |4 oth | |
700 | 1 | |a Yamamoto, Koji |4 oth | |
700 | 1 | |a Muramatsu, Mayu |4 oth | |
700 | 1 | |a Matsubara, Seishiro |4 oth | |
700 | 1 | |a Nishi, Shin‐nosuke |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal for numerical methods in engineering |d Chichester [u.a.] : Wiley, 1969 |g 105(2016), 2, Seite 111-137 |w (DE-627)129601217 |w (DE-600)241381-4 |w (DE-576)015094812 |x 0029-5981 |7 nnns |
773 | 1 | 8 | |g volume:105 |g year:2016 |g number:2 |g pages:111-137 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/nme.4970 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/nme.4970/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1757582594 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 50.03 |q AVZ |
951 | |a AR | ||
952 | |d 105 |j 2016 |e 2 |h 111-137 |
author_variant |
k t kt |
---|---|
matchkey_str |
article:00295981:2016----::ueiapaeetnfrierwsaenlssfopstpae |
hierarchy_sort_str |
2016 |
bklnumber |
50.03 |
publishDate |
2016 |
allfields |
10.1002/nme.4970 doi PQ20160617 (DE-627)OLC1966942311 (DE-599)GBVOLC1966942311 (PRQ)p1190-892f45a25666d456d2f5239687ccbbbfea768f044e0b9c0e8d6b5dbbc631cab93 (KEY)0065660720160000105000200111numericalplatetestingforlineartwoscaleanalysesofco DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Terada, Kenjiro verfasserin aut Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. multiscale analysis composite plate numerical plate testing homogenization Hirayama, Norio oth Yamamoto, Koji oth Muramatsu, Mayu oth Matsubara, Seishiro oth Nishi, Shin‐nosuke oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 105(2016), 2, Seite 111-137 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:105 year:2016 number:2 pages:111-137 http://dx.doi.org/10.1002/nme.4970 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.4970/abstract http://search.proquest.com/docview/1757582594 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 105 2016 2 111-137 |
spelling |
10.1002/nme.4970 doi PQ20160617 (DE-627)OLC1966942311 (DE-599)GBVOLC1966942311 (PRQ)p1190-892f45a25666d456d2f5239687ccbbbfea768f044e0b9c0e8d6b5dbbc631cab93 (KEY)0065660720160000105000200111numericalplatetestingforlineartwoscaleanalysesofco DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Terada, Kenjiro verfasserin aut Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. multiscale analysis composite plate numerical plate testing homogenization Hirayama, Norio oth Yamamoto, Koji oth Muramatsu, Mayu oth Matsubara, Seishiro oth Nishi, Shin‐nosuke oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 105(2016), 2, Seite 111-137 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:105 year:2016 number:2 pages:111-137 http://dx.doi.org/10.1002/nme.4970 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.4970/abstract http://search.proquest.com/docview/1757582594 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 105 2016 2 111-137 |
allfields_unstemmed |
10.1002/nme.4970 doi PQ20160617 (DE-627)OLC1966942311 (DE-599)GBVOLC1966942311 (PRQ)p1190-892f45a25666d456d2f5239687ccbbbfea768f044e0b9c0e8d6b5dbbc631cab93 (KEY)0065660720160000105000200111numericalplatetestingforlineartwoscaleanalysesofco DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Terada, Kenjiro verfasserin aut Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. multiscale analysis composite plate numerical plate testing homogenization Hirayama, Norio oth Yamamoto, Koji oth Muramatsu, Mayu oth Matsubara, Seishiro oth Nishi, Shin‐nosuke oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 105(2016), 2, Seite 111-137 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:105 year:2016 number:2 pages:111-137 http://dx.doi.org/10.1002/nme.4970 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.4970/abstract http://search.proquest.com/docview/1757582594 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 105 2016 2 111-137 |
allfieldsGer |
10.1002/nme.4970 doi PQ20160617 (DE-627)OLC1966942311 (DE-599)GBVOLC1966942311 (PRQ)p1190-892f45a25666d456d2f5239687ccbbbfea768f044e0b9c0e8d6b5dbbc631cab93 (KEY)0065660720160000105000200111numericalplatetestingforlineartwoscaleanalysesofco DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Terada, Kenjiro verfasserin aut Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. multiscale analysis composite plate numerical plate testing homogenization Hirayama, Norio oth Yamamoto, Koji oth Muramatsu, Mayu oth Matsubara, Seishiro oth Nishi, Shin‐nosuke oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 105(2016), 2, Seite 111-137 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:105 year:2016 number:2 pages:111-137 http://dx.doi.org/10.1002/nme.4970 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.4970/abstract http://search.proquest.com/docview/1757582594 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 105 2016 2 111-137 |
allfieldsSound |
10.1002/nme.4970 doi PQ20160617 (DE-627)OLC1966942311 (DE-599)GBVOLC1966942311 (PRQ)p1190-892f45a25666d456d2f5239687ccbbbfea768f044e0b9c0e8d6b5dbbc631cab93 (KEY)0065660720160000105000200111numericalplatetestingforlineartwoscaleanalysesofco DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Terada, Kenjiro verfasserin aut Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. multiscale analysis composite plate numerical plate testing homogenization Hirayama, Norio oth Yamamoto, Koji oth Muramatsu, Mayu oth Matsubara, Seishiro oth Nishi, Shin‐nosuke oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 105(2016), 2, Seite 111-137 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:105 year:2016 number:2 pages:111-137 http://dx.doi.org/10.1002/nme.4970 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.4970/abstract http://search.proquest.com/docview/1757582594 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 105 2016 2 111-137 |
language |
English |
source |
Enthalten in International journal for numerical methods in engineering 105(2016), 2, Seite 111-137 volume:105 year:2016 number:2 pages:111-137 |
sourceStr |
Enthalten in International journal for numerical methods in engineering 105(2016), 2, Seite 111-137 volume:105 year:2016 number:2 pages:111-137 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
multiscale analysis composite plate numerical plate testing homogenization |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
International journal for numerical methods in engineering |
authorswithroles_txt_mv |
Terada, Kenjiro @@aut@@ Hirayama, Norio @@oth@@ Yamamoto, Koji @@oth@@ Muramatsu, Mayu @@oth@@ Matsubara, Seishiro @@oth@@ Nishi, Shin‐nosuke @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129601217 |
dewey-sort |
3510 |
id |
OLC1966942311 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1966942311</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220112554.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/nme.4970</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1966942311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1966942311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1190-892f45a25666d456d2f5239687ccbbbfea768f044e0b9c0e8d6b5dbbc631cab93</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0065660720160000105000200111numericalplatetestingforlineartwoscaleanalysesofco</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Terada, Kenjiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiscale analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite plate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical plate testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homogenization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hirayama, Norio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamamoto, Koji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muramatsu, Mayu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matsubara, Seishiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nishi, Shin‐nosuke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal for numerical methods in engineering</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1969</subfield><subfield code="g">105(2016), 2, Seite 111-137</subfield><subfield code="w">(DE-627)129601217</subfield><subfield code="w">(DE-600)241381-4</subfield><subfield code="w">(DE-576)015094812</subfield><subfield code="x">0029-5981</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:105</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:111-137</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/nme.4970</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/nme.4970/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1757582594</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">105</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">111-137</subfield></datafield></record></collection>
|
author |
Terada, Kenjiro |
spellingShingle |
Terada, Kenjiro ddc 510 bkl 50.03 misc multiscale analysis misc composite plate misc numerical plate testing misc homogenization Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity |
authorStr |
Terada, Kenjiro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601217 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0029-5981 |
topic_title |
510 DNB 50.03 bkl Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity multiscale analysis composite plate numerical plate testing homogenization |
topic |
ddc 510 bkl 50.03 misc multiscale analysis misc composite plate misc numerical plate testing misc homogenization |
topic_unstemmed |
ddc 510 bkl 50.03 misc multiscale analysis misc composite plate misc numerical plate testing misc homogenization |
topic_browse |
ddc 510 bkl 50.03 misc multiscale analysis misc composite plate misc numerical plate testing misc homogenization |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
n h nh k y ky m m mm s m sm s n sn |
hierarchy_parent_title |
International journal for numerical methods in engineering |
hierarchy_parent_id |
129601217 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
International journal for numerical methods in engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 |
title |
Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity |
ctrlnum |
(DE-627)OLC1966942311 (DE-599)GBVOLC1966942311 (PRQ)p1190-892f45a25666d456d2f5239687ccbbbfea768f044e0b9c0e8d6b5dbbc631cab93 (KEY)0065660720160000105000200111numericalplatetestingforlineartwoscaleanalysesofco |
title_full |
Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity |
author_sort |
Terada, Kenjiro |
journal |
International journal for numerical methods in engineering |
journalStr |
International journal for numerical methods in engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
111 |
author_browse |
Terada, Kenjiro |
container_volume |
105 |
class |
510 DNB 50.03 bkl |
format_se |
Aufsätze |
author-letter |
Terada, Kenjiro |
doi_str_mv |
10.1002/nme.4970 |
dewey-full |
510 |
title_sort |
numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity |
title_auth |
Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity |
abstract |
A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd. |
abstractGer |
A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd. |
abstract_unstemmed |
A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
2 |
title_short |
Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity |
url |
http://dx.doi.org/10.1002/nme.4970 http://onlinelibrary.wiley.com/doi/10.1002/nme.4970/abstract http://search.proquest.com/docview/1757582594 |
remote_bool |
false |
author2 |
Hirayama, Norio Yamamoto, Koji Muramatsu, Mayu Matsubara, Seishiro Nishi, Shin‐nosuke |
author2Str |
Hirayama, Norio Yamamoto, Koji Muramatsu, Mayu Matsubara, Seishiro Nishi, Shin‐nosuke |
ppnlink |
129601217 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1002/nme.4970 |
up_date |
2024-07-03T23:26:34.791Z |
_version_ |
1803602304479264768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1966942311</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220112554.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/nme.4970</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1966942311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1966942311</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1190-892f45a25666d456d2f5239687ccbbbfea768f044e0b9c0e8d6b5dbbc631cab93</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0065660720160000105000200111numericalplatetestingforlineartwoscaleanalysesofco</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Terada, Kenjiro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical plate testing for linear two‐scale analyses of composite plates with in‐plane periodicity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A method of numerical plate testing (NPT) for composite plates with in‐plane periodic heterogeneity is proposed. In the two‐scale boundary value problem, a thick plate model is employed at macroscale, while three‐dimensional solids are assumed at microscale. The NPT, which is nothing more or less than the homogenization analysis, is in fact a series of microscopic analyses on a unit cell that evaluates the macroscopic plate stiffnesses. The specific functional forms of microscopic displacements are originally presented so that the relationship between the macroscopic resultant stresses/moments and strains/curvatures to be consistent with the microscopic equilibrated state. In order to perform NPT by using general‐purpose FEM programs, we introduce control nodes to facilitate the multiple‐point constraints for in‐plane periodicity. Numerical examples are presented to verify that the proposed method of NPT reproduces the plate stiffnesses in classical plate and laminate theories. We also perform a series of homogenization, macroscopic, and localization analyses for an in‐plane heterogeneous composite plate to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiscale analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">composite plate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">numerical plate testing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">homogenization</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hirayama, Norio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamamoto, Koji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muramatsu, Mayu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matsubara, Seishiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nishi, Shin‐nosuke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal for numerical methods in engineering</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1969</subfield><subfield code="g">105(2016), 2, Seite 111-137</subfield><subfield code="w">(DE-627)129601217</subfield><subfield code="w">(DE-600)241381-4</subfield><subfield code="w">(DE-576)015094812</subfield><subfield code="x">0029-5981</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:105</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:111-137</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/nme.4970</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/nme.4970/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1757582594</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">105</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">111-137</subfield></datafield></record></collection>
|
score |
7.401165 |