Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study
Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model include...
Ausführliche Beschreibung
Autor*in: |
Sabba, Fabrizio [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science & technology - Washington, DC : ACS Publ., 1967, 49(2015), 3, Seite 1486 |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2015 ; number:3 ; pages:1486 |
Links: |
---|
Katalog-ID: |
OLC1967368112 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1967368112 | ||
003 | DE-627 | ||
005 | 20230714170821.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1967368112 | ||
035 | |a (DE-599)GBVOLC1967368112 | ||
035 | |a (PRQ)p591-49d268b5e7c36dbe21e41eb727d5a3f374df469b84131699fcc68c2ea16ea92c0 | ||
035 | |a (KEY)0072627320150000049000301486hydroxylaminediffusioncanenhancenoemissionsinnitri | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 050 |a 333.7 |q DNB |
100 | 1 | |a Sabba, Fabrizio |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms. | ||
650 | 4 | |a Nitrous Oxide - metabolism | |
650 | 4 | |a Hydroxylamine - metabolism | |
650 | 4 | |a Air Pollutants - analysis | |
650 | 4 | |a Ammonia - metabolism | |
650 | 4 | |a Air Pollutants - metabolism | |
650 | 4 | |a Hydroxylamine - chemistry | |
650 | 4 | |a Nitrous Oxide - analysis | |
700 | 1 | |a Picioreanu, Cristian |4 oth | |
700 | 1 | |a Pérez, Julio |4 oth | |
700 | 1 | |a Nerenberg, Robert |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Environmental science & technology |d Washington, DC : ACS Publ., 1967 |g 49(2015), 3, Seite 1486 |w (DE-627)129852457 |w (DE-600)280653-8 |w (DE-576)01515274X |x 0013-936X |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:2015 |g number:3 |g pages:1486 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25539140 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_4323 | ||
951 | |a AR | ||
952 | |d 49 |j 2015 |e 3 |h 1486 |
author_variant |
f s fs |
---|---|
matchkey_str |
article:0013936X:2015----::yrxlmndfuinaehneomsinintiynb |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
PQ20160617 (DE-627)OLC1967368112 (DE-599)GBVOLC1967368112 (PRQ)p591-49d268b5e7c36dbe21e41eb727d5a3f374df469b84131699fcc68c2ea16ea92c0 (KEY)0072627320150000049000301486hydroxylaminediffusioncanenhancenoemissionsinnitri DE-627 ger DE-627 rakwb eng 050 333.7 DNB Sabba, Fabrizio verfasserin aut Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms. Nitrous Oxide - metabolism Hydroxylamine - metabolism Air Pollutants - analysis Ammonia - metabolism Air Pollutants - metabolism Hydroxylamine - chemistry Nitrous Oxide - analysis Picioreanu, Cristian oth Pérez, Julio oth Nerenberg, Robert oth Enthalten in Environmental science & technology Washington, DC : ACS Publ., 1967 49(2015), 3, Seite 1486 (DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X 0013-936X nnns volume:49 year:2015 number:3 pages:1486 http://www.ncbi.nlm.nih.gov/pubmed/25539140 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_23 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 AR 49 2015 3 1486 |
spelling |
PQ20160617 (DE-627)OLC1967368112 (DE-599)GBVOLC1967368112 (PRQ)p591-49d268b5e7c36dbe21e41eb727d5a3f374df469b84131699fcc68c2ea16ea92c0 (KEY)0072627320150000049000301486hydroxylaminediffusioncanenhancenoemissionsinnitri DE-627 ger DE-627 rakwb eng 050 333.7 DNB Sabba, Fabrizio verfasserin aut Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms. Nitrous Oxide - metabolism Hydroxylamine - metabolism Air Pollutants - analysis Ammonia - metabolism Air Pollutants - metabolism Hydroxylamine - chemistry Nitrous Oxide - analysis Picioreanu, Cristian oth Pérez, Julio oth Nerenberg, Robert oth Enthalten in Environmental science & technology Washington, DC : ACS Publ., 1967 49(2015), 3, Seite 1486 (DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X 0013-936X nnns volume:49 year:2015 number:3 pages:1486 http://www.ncbi.nlm.nih.gov/pubmed/25539140 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_23 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 AR 49 2015 3 1486 |
allfields_unstemmed |
PQ20160617 (DE-627)OLC1967368112 (DE-599)GBVOLC1967368112 (PRQ)p591-49d268b5e7c36dbe21e41eb727d5a3f374df469b84131699fcc68c2ea16ea92c0 (KEY)0072627320150000049000301486hydroxylaminediffusioncanenhancenoemissionsinnitri DE-627 ger DE-627 rakwb eng 050 333.7 DNB Sabba, Fabrizio verfasserin aut Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms. Nitrous Oxide - metabolism Hydroxylamine - metabolism Air Pollutants - analysis Ammonia - metabolism Air Pollutants - metabolism Hydroxylamine - chemistry Nitrous Oxide - analysis Picioreanu, Cristian oth Pérez, Julio oth Nerenberg, Robert oth Enthalten in Environmental science & technology Washington, DC : ACS Publ., 1967 49(2015), 3, Seite 1486 (DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X 0013-936X nnns volume:49 year:2015 number:3 pages:1486 http://www.ncbi.nlm.nih.gov/pubmed/25539140 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_23 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 AR 49 2015 3 1486 |
allfieldsGer |
PQ20160617 (DE-627)OLC1967368112 (DE-599)GBVOLC1967368112 (PRQ)p591-49d268b5e7c36dbe21e41eb727d5a3f374df469b84131699fcc68c2ea16ea92c0 (KEY)0072627320150000049000301486hydroxylaminediffusioncanenhancenoemissionsinnitri DE-627 ger DE-627 rakwb eng 050 333.7 DNB Sabba, Fabrizio verfasserin aut Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms. Nitrous Oxide - metabolism Hydroxylamine - metabolism Air Pollutants - analysis Ammonia - metabolism Air Pollutants - metabolism Hydroxylamine - chemistry Nitrous Oxide - analysis Picioreanu, Cristian oth Pérez, Julio oth Nerenberg, Robert oth Enthalten in Environmental science & technology Washington, DC : ACS Publ., 1967 49(2015), 3, Seite 1486 (DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X 0013-936X nnns volume:49 year:2015 number:3 pages:1486 http://www.ncbi.nlm.nih.gov/pubmed/25539140 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_23 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 AR 49 2015 3 1486 |
allfieldsSound |
PQ20160617 (DE-627)OLC1967368112 (DE-599)GBVOLC1967368112 (PRQ)p591-49d268b5e7c36dbe21e41eb727d5a3f374df469b84131699fcc68c2ea16ea92c0 (KEY)0072627320150000049000301486hydroxylaminediffusioncanenhancenoemissionsinnitri DE-627 ger DE-627 rakwb eng 050 333.7 DNB Sabba, Fabrizio verfasserin aut Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms. Nitrous Oxide - metabolism Hydroxylamine - metabolism Air Pollutants - analysis Ammonia - metabolism Air Pollutants - metabolism Hydroxylamine - chemistry Nitrous Oxide - analysis Picioreanu, Cristian oth Pérez, Julio oth Nerenberg, Robert oth Enthalten in Environmental science & technology Washington, DC : ACS Publ., 1967 49(2015), 3, Seite 1486 (DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X 0013-936X nnns volume:49 year:2015 number:3 pages:1486 http://www.ncbi.nlm.nih.gov/pubmed/25539140 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_23 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 AR 49 2015 3 1486 |
language |
English |
source |
Enthalten in Environmental science & technology 49(2015), 3, Seite 1486 volume:49 year:2015 number:3 pages:1486 |
sourceStr |
Enthalten in Environmental science & technology 49(2015), 3, Seite 1486 volume:49 year:2015 number:3 pages:1486 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nitrous Oxide - metabolism Hydroxylamine - metabolism Air Pollutants - analysis Ammonia - metabolism Air Pollutants - metabolism Hydroxylamine - chemistry Nitrous Oxide - analysis |
dewey-raw |
050 |
isfreeaccess_bool |
false |
container_title |
Environmental science & technology |
authorswithroles_txt_mv |
Sabba, Fabrizio @@aut@@ Picioreanu, Cristian @@oth@@ Pérez, Julio @@oth@@ Nerenberg, Robert @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129852457 |
dewey-sort |
250 |
id |
OLC1967368112 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1967368112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714170821.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1967368112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1967368112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p591-49d268b5e7c36dbe21e41eb727d5a3f374df469b84131699fcc68c2ea16ea92c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072627320150000049000301486hydroxylaminediffusioncanenhancenoemissionsinnitri</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="a">333.7</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sabba, Fabrizio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrous Oxide - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydroxylamine - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air Pollutants - analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ammonia - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air Pollutants - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydroxylamine - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrous Oxide - analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Picioreanu, Cristian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pérez, Julio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nerenberg, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science & technology</subfield><subfield code="d">Washington, DC : ACS Publ., 1967</subfield><subfield code="g">49(2015), 3, Seite 1486</subfield><subfield code="w">(DE-627)129852457</subfield><subfield code="w">(DE-600)280653-8</subfield><subfield code="w">(DE-576)01515274X</subfield><subfield code="x">0013-936X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1486</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25539140</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">1486</subfield></datafield></record></collection>
|
author |
Sabba, Fabrizio |
spellingShingle |
Sabba, Fabrizio ddc 050 misc Nitrous Oxide - metabolism misc Hydroxylamine - metabolism misc Air Pollutants - analysis misc Ammonia - metabolism misc Air Pollutants - metabolism misc Hydroxylamine - chemistry misc Nitrous Oxide - analysis Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study |
authorStr |
Sabba, Fabrizio |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129852457 |
format |
Article |
dewey-ones |
050 - General serial publications 333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0013-936X |
topic_title |
050 333.7 DNB Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study Nitrous Oxide - metabolism Hydroxylamine - metabolism Air Pollutants - analysis Ammonia - metabolism Air Pollutants - metabolism Hydroxylamine - chemistry Nitrous Oxide - analysis |
topic |
ddc 050 misc Nitrous Oxide - metabolism misc Hydroxylamine - metabolism misc Air Pollutants - analysis misc Ammonia - metabolism misc Air Pollutants - metabolism misc Hydroxylamine - chemistry misc Nitrous Oxide - analysis |
topic_unstemmed |
ddc 050 misc Nitrous Oxide - metabolism misc Hydroxylamine - metabolism misc Air Pollutants - analysis misc Ammonia - metabolism misc Air Pollutants - metabolism misc Hydroxylamine - chemistry misc Nitrous Oxide - analysis |
topic_browse |
ddc 050 misc Nitrous Oxide - metabolism misc Hydroxylamine - metabolism misc Air Pollutants - analysis misc Ammonia - metabolism misc Air Pollutants - metabolism misc Hydroxylamine - chemistry misc Nitrous Oxide - analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
c p cp j p jp r n rn |
hierarchy_parent_title |
Environmental science & technology |
hierarchy_parent_id |
129852457 |
dewey-tens |
050 - Magazines, journals & serials 330 - Economics |
hierarchy_top_title |
Environmental science & technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129852457 (DE-600)280653-8 (DE-576)01515274X |
title |
Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study |
ctrlnum |
(DE-627)OLC1967368112 (DE-599)GBVOLC1967368112 (PRQ)p591-49d268b5e7c36dbe21e41eb727d5a3f374df469b84131699fcc68c2ea16ea92c0 (KEY)0072627320150000049000301486hydroxylaminediffusioncanenhancenoemissionsinnitri |
title_full |
Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study |
author_sort |
Sabba, Fabrizio |
journal |
Environmental science & technology |
journalStr |
Environmental science & technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1486 |
author_browse |
Sabba, Fabrizio |
container_volume |
49 |
class |
050 333.7 DNB |
format_se |
Aufsätze |
author-letter |
Sabba, Fabrizio |
dewey-full |
050 333.7 |
title_sort |
hydroxylamine diffusion can enhance n₂o emissions in nitrifying biofilms: a modeling study |
title_auth |
Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study |
abstract |
Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms. |
abstractGer |
Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms. |
abstract_unstemmed |
Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-TEC SSG-OLC-CHE GBV_ILN_23 GBV_ILN_70 GBV_ILN_252 GBV_ILN_2006 GBV_ILN_4323 |
container_issue |
3 |
title_short |
Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study |
url |
http://www.ncbi.nlm.nih.gov/pubmed/25539140 |
remote_bool |
false |
author2 |
Picioreanu, Cristian Pérez, Julio Nerenberg, Robert |
author2Str |
Picioreanu, Cristian Pérez, Julio Nerenberg, Robert |
ppnlink |
129852457 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
up_date |
2024-07-04T00:50:25.256Z |
_version_ |
1803607579304132608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1967368112</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714170821.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1967368112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1967368112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p591-49d268b5e7c36dbe21e41eb727d5a3f374df469b84131699fcc68c2ea16ea92c0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072627320150000049000301486hydroxylaminediffusioncanenhancenoemissionsinnitri</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">050</subfield><subfield code="a">333.7</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sabba, Fabrizio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrous Oxide - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydroxylamine - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air Pollutants - analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ammonia - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Air Pollutants - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydroxylamine - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrous Oxide - analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Picioreanu, Cristian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pérez, Julio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nerenberg, Robert</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science & technology</subfield><subfield code="d">Washington, DC : ACS Publ., 1967</subfield><subfield code="g">49(2015), 3, Seite 1486</subfield><subfield code="w">(DE-627)129852457</subfield><subfield code="w">(DE-600)280653-8</subfield><subfield code="w">(DE-576)01515274X</subfield><subfield code="x">0013-936X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1486</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25539140</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="h">1486</subfield></datafield></record></collection>
|
score |
7.4002686 |