Artificial neural network modeling of the water quality index using land use areas as predictors
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate...
Ausführliche Beschreibung
Autor*in: |
Gazzaz, Nabeel M [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Water environment research - Hoboken, NJ : Wiley, 1992, 87(2015), 2, Seite 99 |
---|---|
Übergeordnetes Werk: |
volume:87 ; year:2015 ; number:2 ; pages:99 |
Links: |
---|
Katalog-ID: |
OLC1967689156 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1967689156 | ||
003 | DE-627 | ||
005 | 20220219134054.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1967689156 | ||
035 | |a (DE-599)GBVOLC1967689156 | ||
035 | |a (PRQ)p1631-7d19903a19b0130ff58c3c0389d81c0a7375ec02a7001cdc3ce5dd2fda6b54690 | ||
035 | |a (KEY)0077915620150000087000200099artificialneuralnetworkmodelingofthewaterqualityin | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 690 |q DNB |
084 | |a AR 10100 |q AVZ |2 rvk | ||
084 | |a 44.00 |2 bkl | ||
100 | 1 | |a Gazzaz, Nabeel M |e verfasserin |4 aut | |
245 | 1 | 0 | |a Artificial neural network modeling of the water quality index using land use areas as predictors |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. | ||
650 | 4 | |a Water Quality - standards | |
650 | 4 | |a Rivers - chemistry | |
650 | 4 | |a Environmental Monitoring - methods | |
650 | 4 | |a Rivers | |
650 | 4 | |a Mathematical models | |
650 | 4 | |a Back propagation | |
650 | 4 | |a Neural networks | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Water quality | |
650 | 4 | |a Land use | |
700 | 1 | |a Yusoff, Mohd Kamil |4 oth | |
700 | 1 | |a Ramli, Mohammad Firuz |4 oth | |
700 | 1 | |a Juahir, Hafizan |4 oth | |
700 | 1 | |a Aris, Ahmad Zaharin |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Water environment research |d Hoboken, NJ : Wiley, 1992 |g 87(2015), 2, Seite 99 |w (DE-627)131039857 |w (DE-600)1098976-6 |w (DE-576)028044711 |x 1061-4303 |7 nnns |
773 | 1 | 8 | |g volume:87 |g year:2015 |g number:2 |g pages:99 |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25790513 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1660116968 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4313 | ||
936 | r | v | |a AR 10100 |
936 | b | k | |a 44.00 |q AVZ |
951 | |a AR | ||
952 | |d 87 |j 2015 |e 2 |h 99 |
author_variant |
n m g nm nmg |
---|---|
matchkey_str |
article:10614303:2015----::riiilerlewrmdlnoteaeqaiyneuiga |
hierarchy_sort_str |
2015 |
bklnumber |
44.00 |
publishDate |
2015 |
allfields |
PQ20160617 (DE-627)OLC1967689156 (DE-599)GBVOLC1967689156 (PRQ)p1631-7d19903a19b0130ff58c3c0389d81c0a7375ec02a7001cdc3ce5dd2fda6b54690 (KEY)0077915620150000087000200099artificialneuralnetworkmodelingofthewaterqualityin DE-627 ger DE-627 rakwb eng 333.7 690 DNB AR 10100 AVZ rvk 44.00 bkl Gazzaz, Nabeel M verfasserin aut Artificial neural network modeling of the water quality index using land use areas as predictors 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. Water Quality - standards Rivers - chemistry Environmental Monitoring - methods Rivers Mathematical models Back propagation Neural networks Algorithms Water quality Land use Yusoff, Mohd Kamil oth Ramli, Mohammad Firuz oth Juahir, Hafizan oth Aris, Ahmad Zaharin oth Enthalten in Water environment research Hoboken, NJ : Wiley, 1992 87(2015), 2, Seite 99 (DE-627)131039857 (DE-600)1098976-6 (DE-576)028044711 1061-4303 nnns volume:87 year:2015 number:2 pages:99 http://www.ncbi.nlm.nih.gov/pubmed/25790513 http://search.proquest.com/docview/1660116968 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4313 AR 10100 44.00 AVZ AR 87 2015 2 99 |
spelling |
PQ20160617 (DE-627)OLC1967689156 (DE-599)GBVOLC1967689156 (PRQ)p1631-7d19903a19b0130ff58c3c0389d81c0a7375ec02a7001cdc3ce5dd2fda6b54690 (KEY)0077915620150000087000200099artificialneuralnetworkmodelingofthewaterqualityin DE-627 ger DE-627 rakwb eng 333.7 690 DNB AR 10100 AVZ rvk 44.00 bkl Gazzaz, Nabeel M verfasserin aut Artificial neural network modeling of the water quality index using land use areas as predictors 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. Water Quality - standards Rivers - chemistry Environmental Monitoring - methods Rivers Mathematical models Back propagation Neural networks Algorithms Water quality Land use Yusoff, Mohd Kamil oth Ramli, Mohammad Firuz oth Juahir, Hafizan oth Aris, Ahmad Zaharin oth Enthalten in Water environment research Hoboken, NJ : Wiley, 1992 87(2015), 2, Seite 99 (DE-627)131039857 (DE-600)1098976-6 (DE-576)028044711 1061-4303 nnns volume:87 year:2015 number:2 pages:99 http://www.ncbi.nlm.nih.gov/pubmed/25790513 http://search.proquest.com/docview/1660116968 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4313 AR 10100 44.00 AVZ AR 87 2015 2 99 |
allfields_unstemmed |
PQ20160617 (DE-627)OLC1967689156 (DE-599)GBVOLC1967689156 (PRQ)p1631-7d19903a19b0130ff58c3c0389d81c0a7375ec02a7001cdc3ce5dd2fda6b54690 (KEY)0077915620150000087000200099artificialneuralnetworkmodelingofthewaterqualityin DE-627 ger DE-627 rakwb eng 333.7 690 DNB AR 10100 AVZ rvk 44.00 bkl Gazzaz, Nabeel M verfasserin aut Artificial neural network modeling of the water quality index using land use areas as predictors 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. Water Quality - standards Rivers - chemistry Environmental Monitoring - methods Rivers Mathematical models Back propagation Neural networks Algorithms Water quality Land use Yusoff, Mohd Kamil oth Ramli, Mohammad Firuz oth Juahir, Hafizan oth Aris, Ahmad Zaharin oth Enthalten in Water environment research Hoboken, NJ : Wiley, 1992 87(2015), 2, Seite 99 (DE-627)131039857 (DE-600)1098976-6 (DE-576)028044711 1061-4303 nnns volume:87 year:2015 number:2 pages:99 http://www.ncbi.nlm.nih.gov/pubmed/25790513 http://search.proquest.com/docview/1660116968 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4313 AR 10100 44.00 AVZ AR 87 2015 2 99 |
allfieldsGer |
PQ20160617 (DE-627)OLC1967689156 (DE-599)GBVOLC1967689156 (PRQ)p1631-7d19903a19b0130ff58c3c0389d81c0a7375ec02a7001cdc3ce5dd2fda6b54690 (KEY)0077915620150000087000200099artificialneuralnetworkmodelingofthewaterqualityin DE-627 ger DE-627 rakwb eng 333.7 690 DNB AR 10100 AVZ rvk 44.00 bkl Gazzaz, Nabeel M verfasserin aut Artificial neural network modeling of the water quality index using land use areas as predictors 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. Water Quality - standards Rivers - chemistry Environmental Monitoring - methods Rivers Mathematical models Back propagation Neural networks Algorithms Water quality Land use Yusoff, Mohd Kamil oth Ramli, Mohammad Firuz oth Juahir, Hafizan oth Aris, Ahmad Zaharin oth Enthalten in Water environment research Hoboken, NJ : Wiley, 1992 87(2015), 2, Seite 99 (DE-627)131039857 (DE-600)1098976-6 (DE-576)028044711 1061-4303 nnns volume:87 year:2015 number:2 pages:99 http://www.ncbi.nlm.nih.gov/pubmed/25790513 http://search.proquest.com/docview/1660116968 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4313 AR 10100 44.00 AVZ AR 87 2015 2 99 |
allfieldsSound |
PQ20160617 (DE-627)OLC1967689156 (DE-599)GBVOLC1967689156 (PRQ)p1631-7d19903a19b0130ff58c3c0389d81c0a7375ec02a7001cdc3ce5dd2fda6b54690 (KEY)0077915620150000087000200099artificialneuralnetworkmodelingofthewaterqualityin DE-627 ger DE-627 rakwb eng 333.7 690 DNB AR 10100 AVZ rvk 44.00 bkl Gazzaz, Nabeel M verfasserin aut Artificial neural network modeling of the water quality index using land use areas as predictors 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. Water Quality - standards Rivers - chemistry Environmental Monitoring - methods Rivers Mathematical models Back propagation Neural networks Algorithms Water quality Land use Yusoff, Mohd Kamil oth Ramli, Mohammad Firuz oth Juahir, Hafizan oth Aris, Ahmad Zaharin oth Enthalten in Water environment research Hoboken, NJ : Wiley, 1992 87(2015), 2, Seite 99 (DE-627)131039857 (DE-600)1098976-6 (DE-576)028044711 1061-4303 nnns volume:87 year:2015 number:2 pages:99 http://www.ncbi.nlm.nih.gov/pubmed/25790513 http://search.proquest.com/docview/1660116968 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4313 AR 10100 44.00 AVZ AR 87 2015 2 99 |
language |
English |
source |
Enthalten in Water environment research 87(2015), 2, Seite 99 volume:87 year:2015 number:2 pages:99 |
sourceStr |
Enthalten in Water environment research 87(2015), 2, Seite 99 volume:87 year:2015 number:2 pages:99 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Water Quality - standards Rivers - chemistry Environmental Monitoring - methods Rivers Mathematical models Back propagation Neural networks Algorithms Water quality Land use |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Water environment research |
authorswithroles_txt_mv |
Gazzaz, Nabeel M @@aut@@ Yusoff, Mohd Kamil @@oth@@ Ramli, Mohammad Firuz @@oth@@ Juahir, Hafizan @@oth@@ Aris, Ahmad Zaharin @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
131039857 |
dewey-sort |
3333.7 |
id |
OLC1967689156 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1967689156</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219134054.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1967689156</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1967689156</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1631-7d19903a19b0130ff58c3c0389d81c0a7375ec02a7001cdc3ce5dd2fda6b54690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0077915620150000087000200099artificialneuralnetworkmodelingofthewaterqualityin</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">690</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AR 10100</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gazzaz, Nabeel M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial neural network modeling of the water quality index using land use areas as predictors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water Quality - standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rivers - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental Monitoring - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Back propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land use</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yusoff, Mohd Kamil</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramli, Mohammad Firuz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Juahir, Hafizan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aris, Ahmad Zaharin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water environment research</subfield><subfield code="d">Hoboken, NJ : Wiley, 1992</subfield><subfield code="g">87(2015), 2, Seite 99</subfield><subfield code="w">(DE-627)131039857</subfield><subfield code="w">(DE-600)1098976-6</subfield><subfield code="w">(DE-576)028044711</subfield><subfield code="x">1061-4303</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:87</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:99</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25790513</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1660116968</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">AR 10100</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">87</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">99</subfield></datafield></record></collection>
|
author |
Gazzaz, Nabeel M |
spellingShingle |
Gazzaz, Nabeel M ddc 333.7 rvk AR 10100 bkl 44.00 misc Water Quality - standards misc Rivers - chemistry misc Environmental Monitoring - methods misc Rivers misc Mathematical models misc Back propagation misc Neural networks misc Algorithms misc Water quality misc Land use Artificial neural network modeling of the water quality index using land use areas as predictors |
authorStr |
Gazzaz, Nabeel M |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)131039857 |
format |
Article |
dewey-ones |
333 - Economics of land & energy 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1061-4303 |
topic_title |
333.7 690 DNB AR 10100 AVZ rvk 44.00 bkl Artificial neural network modeling of the water quality index using land use areas as predictors Water Quality - standards Rivers - chemistry Environmental Monitoring - methods Rivers Mathematical models Back propagation Neural networks Algorithms Water quality Land use |
topic |
ddc 333.7 rvk AR 10100 bkl 44.00 misc Water Quality - standards misc Rivers - chemistry misc Environmental Monitoring - methods misc Rivers misc Mathematical models misc Back propagation misc Neural networks misc Algorithms misc Water quality misc Land use |
topic_unstemmed |
ddc 333.7 rvk AR 10100 bkl 44.00 misc Water Quality - standards misc Rivers - chemistry misc Environmental Monitoring - methods misc Rivers misc Mathematical models misc Back propagation misc Neural networks misc Algorithms misc Water quality misc Land use |
topic_browse |
ddc 333.7 rvk AR 10100 bkl 44.00 misc Water Quality - standards misc Rivers - chemistry misc Environmental Monitoring - methods misc Rivers misc Mathematical models misc Back propagation misc Neural networks misc Algorithms misc Water quality misc Land use |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m k y mk mky m f r mf mfr h j hj a z a az aza |
hierarchy_parent_title |
Water environment research |
hierarchy_parent_id |
131039857 |
dewey-tens |
330 - Economics 690 - Building & construction |
hierarchy_top_title |
Water environment research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)131039857 (DE-600)1098976-6 (DE-576)028044711 |
title |
Artificial neural network modeling of the water quality index using land use areas as predictors |
ctrlnum |
(DE-627)OLC1967689156 (DE-599)GBVOLC1967689156 (PRQ)p1631-7d19903a19b0130ff58c3c0389d81c0a7375ec02a7001cdc3ce5dd2fda6b54690 (KEY)0077915620150000087000200099artificialneuralnetworkmodelingofthewaterqualityin |
title_full |
Artificial neural network modeling of the water quality index using land use areas as predictors |
author_sort |
Gazzaz, Nabeel M |
journal |
Water environment research |
journalStr |
Water environment research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
99 |
author_browse |
Gazzaz, Nabeel M |
container_volume |
87 |
class |
333.7 690 DNB AR 10100 AVZ rvk 44.00 bkl |
format_se |
Aufsätze |
author-letter |
Gazzaz, Nabeel M |
dewey-full |
333.7 690 |
title_sort |
artificial neural network modeling of the water quality index using land use areas as predictors |
title_auth |
Artificial neural network modeling of the water quality index using land use areas as predictors |
abstract |
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. |
abstractGer |
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. |
abstract_unstemmed |
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC GBV_ILN_70 GBV_ILN_2006 GBV_ILN_4046 GBV_ILN_4219 GBV_ILN_4266 GBV_ILN_4313 |
container_issue |
2 |
title_short |
Artificial neural network modeling of the water quality index using land use areas as predictors |
url |
http://www.ncbi.nlm.nih.gov/pubmed/25790513 http://search.proquest.com/docview/1660116968 |
remote_bool |
false |
author2 |
Yusoff, Mohd Kamil Ramli, Mohammad Firuz Juahir, Hafizan Aris, Ahmad Zaharin |
author2Str |
Yusoff, Mohd Kamil Ramli, Mohammad Firuz Juahir, Hafizan Aris, Ahmad Zaharin |
ppnlink |
131039857 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
up_date |
2024-07-04T01:41:25.048Z |
_version_ |
1803610787728588800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1967689156</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219134054.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1967689156</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1967689156</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1631-7d19903a19b0130ff58c3c0389d81c0a7375ec02a7001cdc3ce5dd2fda6b54690</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0077915620150000087000200099artificialneuralnetworkmodelingofthewaterqualityin</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">690</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AR 10100</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gazzaz, Nabeel M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial neural network modeling of the water quality index using land use areas as predictors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water Quality - standards</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rivers - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental Monitoring - methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rivers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Back propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water quality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Land use</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yusoff, Mohd Kamil</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramli, Mohammad Firuz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Juahir, Hafizan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aris, Ahmad Zaharin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water environment research</subfield><subfield code="d">Hoboken, NJ : Wiley, 1992</subfield><subfield code="g">87(2015), 2, Seite 99</subfield><subfield code="w">(DE-627)131039857</subfield><subfield code="w">(DE-600)1098976-6</subfield><subfield code="w">(DE-576)028044711</subfield><subfield code="x">1061-4303</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:87</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:99</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25790513</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1660116968</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">AR 10100</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">87</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">99</subfield></datafield></record></collection>
|
score |
7.399701 |