Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis
In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also,...
Ausführliche Beschreibung
Autor*in: |
Kusljevic, Miodrag D [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
Taylor-Fourier transform (TFT) multiple-resonator-based power system Taylor-Fourier harmonic analysis multiple-resonator-based observer structure |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on instrumentation and measurement - New York, NY, 1963, 64(2015), 2, Seite 554-563 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2015 ; number:2 ; pages:554-563 |
Links: |
---|
DOI / URN: |
10.1109/TIM.2014.2345591 |
---|
Katalog-ID: |
OLC1967761221 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1967761221 | ||
003 | DE-627 | ||
005 | 20220221042230.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIM.2014.2345591 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1967761221 | ||
035 | |a (DE-599)GBVOLC1967761221 | ||
035 | |a (PRQ)c2857-28d7f3aa8d219f55bd4a1577949414f7481cbccb6a4b3a5f087b70c7e96d4a2d0 | ||
035 | |a (KEY)0079426020150000064000200554multipleresonatorbasedpowersystemtaylorfourierharm | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
084 | |a 50.21 |2 bkl | ||
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Kusljevic, Miodrag D |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed. | ||
650 | 4 | |a Thin film transistors | |
650 | 4 | |a Resonant frequency | |
650 | 4 | |a observers | |
650 | 4 | |a Estimation | |
650 | 4 | |a harmonic estimation | |
650 | 4 | |a data record simulation | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Power system dynamics | |
650 | 4 | |a harmonic analysis | |
650 | 4 | |a resonators | |
650 | 4 | |a Taylor-Fourier transform (TFT) | |
650 | 4 | |a recursive algorithm | |
650 | 4 | |a multiple resonators | |
650 | 4 | |a reduced complexity | |
650 | 4 | |a computational effort | |
650 | 4 | |a Heuristic algorithms | |
650 | 4 | |a power system harmonics | |
650 | 4 | |a Taylor-Fourier transform | |
650 | 4 | |a linear transformation | |
650 | 4 | |a multiple-resonator-based power system Taylor-Fourier harmonic analysis | |
650 | 4 | |a multiple-resonator-based observer structure | |
650 | 4 | |a Finite-impulse response (FIR) filter | |
650 | 4 | |a interharmonics presence | |
650 | 4 | |a Fourier transforms | |
650 | 4 | |a frequency estimation | |
650 | 4 | |a computational complexity | |
650 | 4 | |a Measurement | |
650 | 4 | |a Frequency modulation | |
650 | 4 | |a Fourier transformations | |
650 | 4 | |a Harmonic functions | |
650 | 4 | |a Resonators | |
650 | 4 | |a Electric power systems | |
650 | 4 | |a Usage | |
650 | 4 | |a Innovations | |
700 | 1 | |a Tomic, Josif J |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on instrumentation and measurement |d New York, NY, 1963 |g 64(2015), 2, Seite 554-563 |w (DE-627)129358576 |w (DE-600)160442-9 |w (DE-576)014730863 |x 0018-9456 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2015 |g number:2 |g pages:554-563 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIM.2014.2345591 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6881726 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1642122575 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2061 | ||
936 | b | k | |a 50.21 |q AVZ |
936 | b | k | |a 53.00 |q AVZ |
951 | |a AR | ||
952 | |d 64 |j 2015 |e 2 |h 554-563 |
author_variant |
m d k md mdk |
---|---|
matchkey_str |
article:00189456:2015----::utpeeoaobsdoessetyofui |
hierarchy_sort_str |
2015 |
bklnumber |
50.21 53.00 |
publishDate |
2015 |
allfields |
10.1109/TIM.2014.2345591 doi PQ20160617 (DE-627)OLC1967761221 (DE-599)GBVOLC1967761221 (PRQ)c2857-28d7f3aa8d219f55bd4a1577949414f7481cbccb6a4b3a5f087b70c7e96d4a2d0 (KEY)0079426020150000064000200554multipleresonatorbasedpowersystemtaylorfourierharm DE-627 ger DE-627 rakwb eng 620 DNB 50.21 bkl 53.00 bkl Kusljevic, Miodrag D verfasserin aut Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed. Thin film transistors Resonant frequency observers Estimation harmonic estimation data record simulation Fourier analysis Power system dynamics harmonic analysis resonators Taylor-Fourier transform (TFT) recursive algorithm multiple resonators reduced complexity computational effort Heuristic algorithms power system harmonics Taylor-Fourier transform linear transformation multiple-resonator-based power system Taylor-Fourier harmonic analysis multiple-resonator-based observer structure Finite-impulse response (FIR) filter interharmonics presence Fourier transforms frequency estimation computational complexity Measurement Frequency modulation Fourier transformations Harmonic functions Resonators Electric power systems Usage Innovations Tomic, Josif J oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 64(2015), 2, Seite 554-563 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:64 year:2015 number:2 pages:554-563 http://dx.doi.org/10.1109/TIM.2014.2345591 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6881726 http://search.proquest.com/docview/1642122575 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 64 2015 2 554-563 |
spelling |
10.1109/TIM.2014.2345591 doi PQ20160617 (DE-627)OLC1967761221 (DE-599)GBVOLC1967761221 (PRQ)c2857-28d7f3aa8d219f55bd4a1577949414f7481cbccb6a4b3a5f087b70c7e96d4a2d0 (KEY)0079426020150000064000200554multipleresonatorbasedpowersystemtaylorfourierharm DE-627 ger DE-627 rakwb eng 620 DNB 50.21 bkl 53.00 bkl Kusljevic, Miodrag D verfasserin aut Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed. Thin film transistors Resonant frequency observers Estimation harmonic estimation data record simulation Fourier analysis Power system dynamics harmonic analysis resonators Taylor-Fourier transform (TFT) recursive algorithm multiple resonators reduced complexity computational effort Heuristic algorithms power system harmonics Taylor-Fourier transform linear transformation multiple-resonator-based power system Taylor-Fourier harmonic analysis multiple-resonator-based observer structure Finite-impulse response (FIR) filter interharmonics presence Fourier transforms frequency estimation computational complexity Measurement Frequency modulation Fourier transformations Harmonic functions Resonators Electric power systems Usage Innovations Tomic, Josif J oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 64(2015), 2, Seite 554-563 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:64 year:2015 number:2 pages:554-563 http://dx.doi.org/10.1109/TIM.2014.2345591 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6881726 http://search.proquest.com/docview/1642122575 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 64 2015 2 554-563 |
allfields_unstemmed |
10.1109/TIM.2014.2345591 doi PQ20160617 (DE-627)OLC1967761221 (DE-599)GBVOLC1967761221 (PRQ)c2857-28d7f3aa8d219f55bd4a1577949414f7481cbccb6a4b3a5f087b70c7e96d4a2d0 (KEY)0079426020150000064000200554multipleresonatorbasedpowersystemtaylorfourierharm DE-627 ger DE-627 rakwb eng 620 DNB 50.21 bkl 53.00 bkl Kusljevic, Miodrag D verfasserin aut Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed. Thin film transistors Resonant frequency observers Estimation harmonic estimation data record simulation Fourier analysis Power system dynamics harmonic analysis resonators Taylor-Fourier transform (TFT) recursive algorithm multiple resonators reduced complexity computational effort Heuristic algorithms power system harmonics Taylor-Fourier transform linear transformation multiple-resonator-based power system Taylor-Fourier harmonic analysis multiple-resonator-based observer structure Finite-impulse response (FIR) filter interharmonics presence Fourier transforms frequency estimation computational complexity Measurement Frequency modulation Fourier transformations Harmonic functions Resonators Electric power systems Usage Innovations Tomic, Josif J oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 64(2015), 2, Seite 554-563 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:64 year:2015 number:2 pages:554-563 http://dx.doi.org/10.1109/TIM.2014.2345591 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6881726 http://search.proquest.com/docview/1642122575 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 64 2015 2 554-563 |
allfieldsGer |
10.1109/TIM.2014.2345591 doi PQ20160617 (DE-627)OLC1967761221 (DE-599)GBVOLC1967761221 (PRQ)c2857-28d7f3aa8d219f55bd4a1577949414f7481cbccb6a4b3a5f087b70c7e96d4a2d0 (KEY)0079426020150000064000200554multipleresonatorbasedpowersystemtaylorfourierharm DE-627 ger DE-627 rakwb eng 620 DNB 50.21 bkl 53.00 bkl Kusljevic, Miodrag D verfasserin aut Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed. Thin film transistors Resonant frequency observers Estimation harmonic estimation data record simulation Fourier analysis Power system dynamics harmonic analysis resonators Taylor-Fourier transform (TFT) recursive algorithm multiple resonators reduced complexity computational effort Heuristic algorithms power system harmonics Taylor-Fourier transform linear transformation multiple-resonator-based power system Taylor-Fourier harmonic analysis multiple-resonator-based observer structure Finite-impulse response (FIR) filter interharmonics presence Fourier transforms frequency estimation computational complexity Measurement Frequency modulation Fourier transformations Harmonic functions Resonators Electric power systems Usage Innovations Tomic, Josif J oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 64(2015), 2, Seite 554-563 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:64 year:2015 number:2 pages:554-563 http://dx.doi.org/10.1109/TIM.2014.2345591 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6881726 http://search.proquest.com/docview/1642122575 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 64 2015 2 554-563 |
allfieldsSound |
10.1109/TIM.2014.2345591 doi PQ20160617 (DE-627)OLC1967761221 (DE-599)GBVOLC1967761221 (PRQ)c2857-28d7f3aa8d219f55bd4a1577949414f7481cbccb6a4b3a5f087b70c7e96d4a2d0 (KEY)0079426020150000064000200554multipleresonatorbasedpowersystemtaylorfourierharm DE-627 ger DE-627 rakwb eng 620 DNB 50.21 bkl 53.00 bkl Kusljevic, Miodrag D verfasserin aut Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed. Thin film transistors Resonant frequency observers Estimation harmonic estimation data record simulation Fourier analysis Power system dynamics harmonic analysis resonators Taylor-Fourier transform (TFT) recursive algorithm multiple resonators reduced complexity computational effort Heuristic algorithms power system harmonics Taylor-Fourier transform linear transformation multiple-resonator-based power system Taylor-Fourier harmonic analysis multiple-resonator-based observer structure Finite-impulse response (FIR) filter interharmonics presence Fourier transforms frequency estimation computational complexity Measurement Frequency modulation Fourier transformations Harmonic functions Resonators Electric power systems Usage Innovations Tomic, Josif J oth Enthalten in IEEE transactions on instrumentation and measurement New York, NY, 1963 64(2015), 2, Seite 554-563 (DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 0018-9456 nnns volume:64 year:2015 number:2 pages:554-563 http://dx.doi.org/10.1109/TIM.2014.2345591 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6881726 http://search.proquest.com/docview/1642122575 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 50.21 AVZ 53.00 AVZ AR 64 2015 2 554-563 |
language |
English |
source |
Enthalten in IEEE transactions on instrumentation and measurement 64(2015), 2, Seite 554-563 volume:64 year:2015 number:2 pages:554-563 |
sourceStr |
Enthalten in IEEE transactions on instrumentation and measurement 64(2015), 2, Seite 554-563 volume:64 year:2015 number:2 pages:554-563 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Thin film transistors Resonant frequency observers Estimation harmonic estimation data record simulation Fourier analysis Power system dynamics harmonic analysis resonators Taylor-Fourier transform (TFT) recursive algorithm multiple resonators reduced complexity computational effort Heuristic algorithms power system harmonics Taylor-Fourier transform linear transformation multiple-resonator-based power system Taylor-Fourier harmonic analysis multiple-resonator-based observer structure Finite-impulse response (FIR) filter interharmonics presence Fourier transforms frequency estimation computational complexity Measurement Frequency modulation Fourier transformations Harmonic functions Resonators Electric power systems Usage Innovations |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on instrumentation and measurement |
authorswithroles_txt_mv |
Kusljevic, Miodrag D @@aut@@ Tomic, Josif J @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129358576 |
dewey-sort |
3620 |
id |
OLC1967761221 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1967761221</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221042230.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIM.2014.2345591</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1967761221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1967761221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2857-28d7f3aa8d219f55bd4a1577949414f7481cbccb6a4b3a5f087b70c7e96d4a2d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0079426020150000064000200554multipleresonatorbasedpowersystemtaylorfourierharm</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kusljevic, Miodrag D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thin film transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonant frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">harmonic estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data record simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power system dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor-Fourier transform (TFT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">recursive algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reduced complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computational effort</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power system harmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor-Fourier transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple-resonator-based power system Taylor-Fourier harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple-resonator-based observer structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-impulse response (FIR) filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interharmonics presence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency modulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric power systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Innovations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomic, Josif J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on instrumentation and measurement</subfield><subfield code="d">New York, NY, 1963</subfield><subfield code="g">64(2015), 2, Seite 554-563</subfield><subfield code="w">(DE-627)129358576</subfield><subfield code="w">(DE-600)160442-9</subfield><subfield code="w">(DE-576)014730863</subfield><subfield code="x">0018-9456</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:554-563</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIM.2014.2345591</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6881726</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1642122575</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.21</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">554-563</subfield></datafield></record></collection>
|
author |
Kusljevic, Miodrag D |
spellingShingle |
Kusljevic, Miodrag D ddc 620 bkl 50.21 bkl 53.00 misc Thin film transistors misc Resonant frequency misc observers misc Estimation misc harmonic estimation misc data record simulation misc Fourier analysis misc Power system dynamics misc harmonic analysis misc resonators misc Taylor-Fourier transform (TFT) misc recursive algorithm misc multiple resonators misc reduced complexity misc computational effort misc Heuristic algorithms misc power system harmonics misc Taylor-Fourier transform misc linear transformation misc multiple-resonator-based power system Taylor-Fourier harmonic analysis misc multiple-resonator-based observer structure misc Finite-impulse response (FIR) filter misc interharmonics presence misc Fourier transforms misc frequency estimation misc computational complexity misc Measurement misc Frequency modulation misc Fourier transformations misc Harmonic functions misc Resonators misc Electric power systems misc Usage misc Innovations Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis |
authorStr |
Kusljevic, Miodrag D |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129358576 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9456 |
topic_title |
620 DNB 50.21 bkl 53.00 bkl Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis Thin film transistors Resonant frequency observers Estimation harmonic estimation data record simulation Fourier analysis Power system dynamics harmonic analysis resonators Taylor-Fourier transform (TFT) recursive algorithm multiple resonators reduced complexity computational effort Heuristic algorithms power system harmonics Taylor-Fourier transform linear transformation multiple-resonator-based power system Taylor-Fourier harmonic analysis multiple-resonator-based observer structure Finite-impulse response (FIR) filter interharmonics presence Fourier transforms frequency estimation computational complexity Measurement Frequency modulation Fourier transformations Harmonic functions Resonators Electric power systems Usage Innovations |
topic |
ddc 620 bkl 50.21 bkl 53.00 misc Thin film transistors misc Resonant frequency misc observers misc Estimation misc harmonic estimation misc data record simulation misc Fourier analysis misc Power system dynamics misc harmonic analysis misc resonators misc Taylor-Fourier transform (TFT) misc recursive algorithm misc multiple resonators misc reduced complexity misc computational effort misc Heuristic algorithms misc power system harmonics misc Taylor-Fourier transform misc linear transformation misc multiple-resonator-based power system Taylor-Fourier harmonic analysis misc multiple-resonator-based observer structure misc Finite-impulse response (FIR) filter misc interharmonics presence misc Fourier transforms misc frequency estimation misc computational complexity misc Measurement misc Frequency modulation misc Fourier transformations misc Harmonic functions misc Resonators misc Electric power systems misc Usage misc Innovations |
topic_unstemmed |
ddc 620 bkl 50.21 bkl 53.00 misc Thin film transistors misc Resonant frequency misc observers misc Estimation misc harmonic estimation misc data record simulation misc Fourier analysis misc Power system dynamics misc harmonic analysis misc resonators misc Taylor-Fourier transform (TFT) misc recursive algorithm misc multiple resonators misc reduced complexity misc computational effort misc Heuristic algorithms misc power system harmonics misc Taylor-Fourier transform misc linear transformation misc multiple-resonator-based power system Taylor-Fourier harmonic analysis misc multiple-resonator-based observer structure misc Finite-impulse response (FIR) filter misc interharmonics presence misc Fourier transforms misc frequency estimation misc computational complexity misc Measurement misc Frequency modulation misc Fourier transformations misc Harmonic functions misc Resonators misc Electric power systems misc Usage misc Innovations |
topic_browse |
ddc 620 bkl 50.21 bkl 53.00 misc Thin film transistors misc Resonant frequency misc observers misc Estimation misc harmonic estimation misc data record simulation misc Fourier analysis misc Power system dynamics misc harmonic analysis misc resonators misc Taylor-Fourier transform (TFT) misc recursive algorithm misc multiple resonators misc reduced complexity misc computational effort misc Heuristic algorithms misc power system harmonics misc Taylor-Fourier transform misc linear transformation misc multiple-resonator-based power system Taylor-Fourier harmonic analysis misc multiple-resonator-based observer structure misc Finite-impulse response (FIR) filter misc interharmonics presence misc Fourier transforms misc frequency estimation misc computational complexity misc Measurement misc Frequency modulation misc Fourier transformations misc Harmonic functions misc Resonators misc Electric power systems misc Usage misc Innovations |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j j t jj jjt |
hierarchy_parent_title |
IEEE transactions on instrumentation and measurement |
hierarchy_parent_id |
129358576 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on instrumentation and measurement |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129358576 (DE-600)160442-9 (DE-576)014730863 |
title |
Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis |
ctrlnum |
(DE-627)OLC1967761221 (DE-599)GBVOLC1967761221 (PRQ)c2857-28d7f3aa8d219f55bd4a1577949414f7481cbccb6a4b3a5f087b70c7e96d4a2d0 (KEY)0079426020150000064000200554multipleresonatorbasedpowersystemtaylorfourierharm |
title_full |
Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis |
author_sort |
Kusljevic, Miodrag D |
journal |
IEEE transactions on instrumentation and measurement |
journalStr |
IEEE transactions on instrumentation and measurement |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
554 |
author_browse |
Kusljevic, Miodrag D |
container_volume |
64 |
class |
620 DNB 50.21 bkl 53.00 bkl |
format_se |
Aufsätze |
author-letter |
Kusljevic, Miodrag D |
doi_str_mv |
10.1109/TIM.2014.2345591 |
dewey-full |
620 |
title_sort |
multiple-resonator-based power system taylor-fourier harmonic analysis |
title_auth |
Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis |
abstract |
In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed. |
abstractGer |
In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed. |
abstract_unstemmed |
In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_24 GBV_ILN_30 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2014 GBV_ILN_2061 |
container_issue |
2 |
title_short |
Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis |
url |
http://dx.doi.org/10.1109/TIM.2014.2345591 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6881726 http://search.proquest.com/docview/1642122575 |
remote_bool |
false |
author2 |
Tomic, Josif J |
author2Str |
Tomic, Josif J |
ppnlink |
129358576 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TIM.2014.2345591 |
up_date |
2024-07-04T01:51:39.167Z |
_version_ |
1803611431676936192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1967761221</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221042230.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIM.2014.2345591</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1967761221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1967761221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2857-28d7f3aa8d219f55bd4a1577949414f7481cbccb6a4b3a5f087b70c7e96d4a2d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0079426020150000064000200554multipleresonatorbasedpowersystemtaylorfourierharm</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kusljevic, Miodrag D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiple-Resonator-Based Power System Taylor-Fourier Harmonic Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a new approach to the harmonic estimation based on the linear transformation named Taylor-Fourier transform has been proposed. A multiple-resonator-based observer structure has been used. The output taps of the multiple resonators may fix not only the complex harmonic values but also, according to the actual resonator multiplicity, their first, second, third, fourth, and so on, derivatives at the corresponding frequency. The algorithm is recursive, which allows its implementation in embedded environment with limited memory. The estimation technique is suitable for application in a wide range of frequency changes, transient conditions, and interharmonics presence, with benefits in a reduced complexity and computational effort. To demonstrate the performance of the developed algorithm, computer simulated data records are processed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thin film transistors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonant frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">harmonic estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data record simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power system dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor-Fourier transform (TFT)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">recursive algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reduced complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computational effort</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">power system harmonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taylor-Fourier transform</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple-resonator-based power system Taylor-Fourier harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple-resonator-based observer structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-impulse response (FIR) filter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interharmonics presence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">frequency estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequency modulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resonators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electric power systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Usage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Innovations</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tomic, Josif J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on instrumentation and measurement</subfield><subfield code="d">New York, NY, 1963</subfield><subfield code="g">64(2015), 2, Seite 554-563</subfield><subfield code="w">(DE-627)129358576</subfield><subfield code="w">(DE-600)160442-9</subfield><subfield code="w">(DE-576)014730863</subfield><subfield code="x">0018-9456</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:554-563</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIM.2014.2345591</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6881726</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1642122575</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.21</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">554-563</subfield></datafield></record></collection>
|
score |
7.398978 |