MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters
In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realizati...
Ausführliche Beschreibung
Autor*in: |
Shaterian, Mostafa [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
symmetric cascoded MTL cell (SCMC) square‐root domain (SRD) circuits |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of circuit theory and applications - London : Wiley, 1973, 43(2015), 6, Seite 793-805 |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2015 ; number:6 ; pages:793-805 |
Links: |
---|
DOI / URN: |
10.1002/cta.1975 |
---|
Katalog-ID: |
OLC1967821011 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1967821011 | ||
003 | DE-627 | ||
005 | 20230714171537.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/cta.1975 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1967821011 | ||
035 | |a (DE-599)GBVOLC1967821011 | ||
035 | |a (PRQ)p2422-c5f2c4785a0a0efa437819dddb5242094443206774494407cc1d61766f4491d3 | ||
035 | |a (KEY)0080156920150000043000600793mtlbasedimplementationofcurrentmodecmosrmstodcconv | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q ZDB |
100 | 1 | |a Shaterian, Mostafa |e verfasserin |4 aut | |
245 | 1 | 0 | |a MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. | ||
540 | |a Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. | ||
650 | 4 | |a symmetric cascoded MTL cell (SCMC) | |
650 | 4 | |a square‐root domain (SRD) circuits | |
650 | 4 | |a current‐mode analog computation | |
650 | 4 | |a explicit RMS‐to‐DC converter | |
650 | 4 | |a implicit RMS‐to‐DC converter | |
650 | 4 | |a MOS translinear (MTL) principle | |
700 | 1 | |a Twigg, Christopher M |4 oth | |
700 | 1 | |a Azhari, Javad |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of circuit theory and applications |d London : Wiley, 1973 |g 43(2015), 6, Seite 793-805 |w (DE-627)129399531 |w (DE-600)186276-5 |w (DE-576)01478226X |x 0098-9886 |7 nnns |
773 | 1 | 8 | |g volume:43 |g year:2015 |g number:6 |g pages:793-805 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/cta.1975 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/cta.1975/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1685140052 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 43 |j 2015 |e 6 |h 793-805 |
author_variant |
m s ms |
---|---|
matchkey_str |
article:00989886:2015----::tbsdmlmnainfurnmdcors |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1002/cta.1975 doi PQ20160617 (DE-627)OLC1967821011 (DE-599)GBVOLC1967821011 (PRQ)p2422-c5f2c4785a0a0efa437819dddb5242094443206774494407cc1d61766f4491d3 (KEY)0080156920150000043000600793mtlbasedimplementationofcurrentmodecmosrmstodcconv DE-627 ger DE-627 rakwb eng 620 ZDB Shaterian, Mostafa verfasserin aut MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. symmetric cascoded MTL cell (SCMC) square‐root domain (SRD) circuits current‐mode analog computation explicit RMS‐to‐DC converter implicit RMS‐to‐DC converter MOS translinear (MTL) principle Twigg, Christopher M oth Azhari, Javad oth Enthalten in International journal of circuit theory and applications London : Wiley, 1973 43(2015), 6, Seite 793-805 (DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X 0098-9886 nnns volume:43 year:2015 number:6 pages:793-805 http://dx.doi.org/10.1002/cta.1975 Volltext http://onlinelibrary.wiley.com/doi/10.1002/cta.1975/abstract http://search.proquest.com/docview/1685140052 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 43 2015 6 793-805 |
spelling |
10.1002/cta.1975 doi PQ20160617 (DE-627)OLC1967821011 (DE-599)GBVOLC1967821011 (PRQ)p2422-c5f2c4785a0a0efa437819dddb5242094443206774494407cc1d61766f4491d3 (KEY)0080156920150000043000600793mtlbasedimplementationofcurrentmodecmosrmstodcconv DE-627 ger DE-627 rakwb eng 620 ZDB Shaterian, Mostafa verfasserin aut MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. symmetric cascoded MTL cell (SCMC) square‐root domain (SRD) circuits current‐mode analog computation explicit RMS‐to‐DC converter implicit RMS‐to‐DC converter MOS translinear (MTL) principle Twigg, Christopher M oth Azhari, Javad oth Enthalten in International journal of circuit theory and applications London : Wiley, 1973 43(2015), 6, Seite 793-805 (DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X 0098-9886 nnns volume:43 year:2015 number:6 pages:793-805 http://dx.doi.org/10.1002/cta.1975 Volltext http://onlinelibrary.wiley.com/doi/10.1002/cta.1975/abstract http://search.proquest.com/docview/1685140052 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 43 2015 6 793-805 |
allfields_unstemmed |
10.1002/cta.1975 doi PQ20160617 (DE-627)OLC1967821011 (DE-599)GBVOLC1967821011 (PRQ)p2422-c5f2c4785a0a0efa437819dddb5242094443206774494407cc1d61766f4491d3 (KEY)0080156920150000043000600793mtlbasedimplementationofcurrentmodecmosrmstodcconv DE-627 ger DE-627 rakwb eng 620 ZDB Shaterian, Mostafa verfasserin aut MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. symmetric cascoded MTL cell (SCMC) square‐root domain (SRD) circuits current‐mode analog computation explicit RMS‐to‐DC converter implicit RMS‐to‐DC converter MOS translinear (MTL) principle Twigg, Christopher M oth Azhari, Javad oth Enthalten in International journal of circuit theory and applications London : Wiley, 1973 43(2015), 6, Seite 793-805 (DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X 0098-9886 nnns volume:43 year:2015 number:6 pages:793-805 http://dx.doi.org/10.1002/cta.1975 Volltext http://onlinelibrary.wiley.com/doi/10.1002/cta.1975/abstract http://search.proquest.com/docview/1685140052 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 43 2015 6 793-805 |
allfieldsGer |
10.1002/cta.1975 doi PQ20160617 (DE-627)OLC1967821011 (DE-599)GBVOLC1967821011 (PRQ)p2422-c5f2c4785a0a0efa437819dddb5242094443206774494407cc1d61766f4491d3 (KEY)0080156920150000043000600793mtlbasedimplementationofcurrentmodecmosrmstodcconv DE-627 ger DE-627 rakwb eng 620 ZDB Shaterian, Mostafa verfasserin aut MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. symmetric cascoded MTL cell (SCMC) square‐root domain (SRD) circuits current‐mode analog computation explicit RMS‐to‐DC converter implicit RMS‐to‐DC converter MOS translinear (MTL) principle Twigg, Christopher M oth Azhari, Javad oth Enthalten in International journal of circuit theory and applications London : Wiley, 1973 43(2015), 6, Seite 793-805 (DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X 0098-9886 nnns volume:43 year:2015 number:6 pages:793-805 http://dx.doi.org/10.1002/cta.1975 Volltext http://onlinelibrary.wiley.com/doi/10.1002/cta.1975/abstract http://search.proquest.com/docview/1685140052 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 43 2015 6 793-805 |
allfieldsSound |
10.1002/cta.1975 doi PQ20160617 (DE-627)OLC1967821011 (DE-599)GBVOLC1967821011 (PRQ)p2422-c5f2c4785a0a0efa437819dddb5242094443206774494407cc1d61766f4491d3 (KEY)0080156920150000043000600793mtlbasedimplementationofcurrentmodecmosrmstodcconv DE-627 ger DE-627 rakwb eng 620 ZDB Shaterian, Mostafa verfasserin aut MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. symmetric cascoded MTL cell (SCMC) square‐root domain (SRD) circuits current‐mode analog computation explicit RMS‐to‐DC converter implicit RMS‐to‐DC converter MOS translinear (MTL) principle Twigg, Christopher M oth Azhari, Javad oth Enthalten in International journal of circuit theory and applications London : Wiley, 1973 43(2015), 6, Seite 793-805 (DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X 0098-9886 nnns volume:43 year:2015 number:6 pages:793-805 http://dx.doi.org/10.1002/cta.1975 Volltext http://onlinelibrary.wiley.com/doi/10.1002/cta.1975/abstract http://search.proquest.com/docview/1685140052 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 43 2015 6 793-805 |
language |
English |
source |
Enthalten in International journal of circuit theory and applications 43(2015), 6, Seite 793-805 volume:43 year:2015 number:6 pages:793-805 |
sourceStr |
Enthalten in International journal of circuit theory and applications 43(2015), 6, Seite 793-805 volume:43 year:2015 number:6 pages:793-805 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
symmetric cascoded MTL cell (SCMC) square‐root domain (SRD) circuits current‐mode analog computation explicit RMS‐to‐DC converter implicit RMS‐to‐DC converter MOS translinear (MTL) principle |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of circuit theory and applications |
authorswithroles_txt_mv |
Shaterian, Mostafa @@aut@@ Twigg, Christopher M @@oth@@ Azhari, Javad @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129399531 |
dewey-sort |
3620 |
id |
OLC1967821011 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1967821011</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714171537.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/cta.1975</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1967821011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1967821011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p2422-c5f2c4785a0a0efa437819dddb5242094443206774494407cc1d61766f4491d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0080156920150000043000600793mtlbasedimplementationofcurrentmodecmosrmstodcconv</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shaterian, Mostafa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symmetric cascoded MTL cell (SCMC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">square‐root domain (SRD) circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">current‐mode analog computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">explicit RMS‐to‐DC converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">implicit RMS‐to‐DC converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MOS translinear (MTL) principle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Twigg, Christopher M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Azhari, Javad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of circuit theory and applications</subfield><subfield code="d">London : Wiley, 1973</subfield><subfield code="g">43(2015), 6, Seite 793-805</subfield><subfield code="w">(DE-627)129399531</subfield><subfield code="w">(DE-600)186276-5</subfield><subfield code="w">(DE-576)01478226X</subfield><subfield code="x">0098-9886</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:793-805</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/cta.1975</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/cta.1975/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1685140052</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="h">793-805</subfield></datafield></record></collection>
|
author |
Shaterian, Mostafa |
spellingShingle |
Shaterian, Mostafa ddc 620 misc symmetric cascoded MTL cell (SCMC) misc square‐root domain (SRD) circuits misc current‐mode analog computation misc explicit RMS‐to‐DC converter misc implicit RMS‐to‐DC converter misc MOS translinear (MTL) principle MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters |
authorStr |
Shaterian, Mostafa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129399531 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0098-9886 |
topic_title |
620 ZDB MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters symmetric cascoded MTL cell (SCMC) square‐root domain (SRD) circuits current‐mode analog computation explicit RMS‐to‐DC converter implicit RMS‐to‐DC converter MOS translinear (MTL) principle |
topic |
ddc 620 misc symmetric cascoded MTL cell (SCMC) misc square‐root domain (SRD) circuits misc current‐mode analog computation misc explicit RMS‐to‐DC converter misc implicit RMS‐to‐DC converter misc MOS translinear (MTL) principle |
topic_unstemmed |
ddc 620 misc symmetric cascoded MTL cell (SCMC) misc square‐root domain (SRD) circuits misc current‐mode analog computation misc explicit RMS‐to‐DC converter misc implicit RMS‐to‐DC converter misc MOS translinear (MTL) principle |
topic_browse |
ddc 620 misc symmetric cascoded MTL cell (SCMC) misc square‐root domain (SRD) circuits misc current‐mode analog computation misc explicit RMS‐to‐DC converter misc implicit RMS‐to‐DC converter misc MOS translinear (MTL) principle |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
c m t cm cmt j a ja |
hierarchy_parent_title |
International journal of circuit theory and applications |
hierarchy_parent_id |
129399531 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of circuit theory and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X |
title |
MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters |
ctrlnum |
(DE-627)OLC1967821011 (DE-599)GBVOLC1967821011 (PRQ)p2422-c5f2c4785a0a0efa437819dddb5242094443206774494407cc1d61766f4491d3 (KEY)0080156920150000043000600793mtlbasedimplementationofcurrentmodecmosrmstodcconv |
title_full |
MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters |
author_sort |
Shaterian, Mostafa |
journal |
International journal of circuit theory and applications |
journalStr |
International journal of circuit theory and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
793 |
author_browse |
Shaterian, Mostafa |
container_volume |
43 |
class |
620 ZDB |
format_se |
Aufsätze |
author-letter |
Shaterian, Mostafa |
doi_str_mv |
10.1002/cta.1975 |
dewey-full |
620 |
title_sort |
mtl‐based implementation of current‐mode cmos rms‐to‐dc converters |
title_auth |
MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters |
abstract |
In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. |
abstractGer |
In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. |
abstract_unstemmed |
In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 |
container_issue |
6 |
title_short |
MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters |
url |
http://dx.doi.org/10.1002/cta.1975 http://onlinelibrary.wiley.com/doi/10.1002/cta.1975/abstract http://search.proquest.com/docview/1685140052 |
remote_bool |
false |
author2 |
Twigg, Christopher M Azhari, Javad |
author2Str |
Twigg, Christopher M Azhari, Javad |
ppnlink |
129399531 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/cta.1975 |
up_date |
2024-07-04T02:00:11.355Z |
_version_ |
1803611968744980480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1967821011</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714171537.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/cta.1975</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1967821011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1967821011</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p2422-c5f2c4785a0a0efa437819dddb5242094443206774494407cc1d61766f4491d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0080156920150000043000600793mtlbasedimplementationofcurrentmodecmosrmstodcconv</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shaterian, Mostafa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MTL‐based implementation of current‐mode CMOS RMS‐to‐DC converters</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, systematic implementation of current‐mode RMS‐to‐DC converters based upon MOS translinear (MTL) principle, utilizing symmetric cascoded MTL cell (SCMC) is proposed. Theory of operation and mathematical analysis of both explicit (direct) and implicit (indirect) techniques for realization of SCMC‐based RMS‐to‐DC converters are discussed. The SCMC includes a folded MTL loop and realizes an MTL equation. MTL principle utilizes the square law characteristics of saturated MOS transistors to realize square‐root domain (SRD) functions. The SCMC is constructed by two connected cascoded current mirrors and has a compact, symmetric, and multi‐purpose structure, with capability of implementing the circuits into the programmable and configurable structures. The proposed RMS‐to‐DC converters utilize the SCMC along with a configurable current mirror array. The required squaring and square‐rooting functions are realized using the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology. Copyright © 2014 John Wiley & Sons, Ltd. In this paper, explicit and implicit implementations of RMS‐to‐DC converters based upon MOS translinear (MTL) principle are proposed. The proposed circuits utilize a symmetric cascoded MTL cell (SCMC) along with a configurable current mirror array. All of the required functions are derived from the SCMC, after proper configuration of the current mirror array. The proposed circuits have been implemented using a reconfigurable architecture fabricated in a 0.5 µm CMOS technology.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symmetric cascoded MTL cell (SCMC)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">square‐root domain (SRD) circuits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">current‐mode analog computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">explicit RMS‐to‐DC converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">implicit RMS‐to‐DC converter</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MOS translinear (MTL) principle</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Twigg, Christopher M</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Azhari, Javad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of circuit theory and applications</subfield><subfield code="d">London : Wiley, 1973</subfield><subfield code="g">43(2015), 6, Seite 793-805</subfield><subfield code="w">(DE-627)129399531</subfield><subfield code="w">(DE-600)186276-5</subfield><subfield code="w">(DE-576)01478226X</subfield><subfield code="x">0098-9886</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:793-805</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/cta.1975</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/cta.1975/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1685140052</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2015</subfield><subfield code="e">6</subfield><subfield code="h">793-805</subfield></datafield></record></collection>
|
score |
7.399148 |