A molecular dynamics simulation on the convective heat transfer in nanochannels
The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on...
Ausführliche Beschreibung
Autor*in: |
Ge, Song [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2014 Taylor & Francis 2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Molecular physics - London : Taylor & Francis, 1958, 113(2015), 7, Seite 703-710 |
---|---|
Übergeordnetes Werk: |
volume:113 ; year:2015 ; number:7 ; pages:703-710 |
Links: |
---|
DOI / URN: |
10.1080/00268976.2014.970593 |
---|
Katalog-ID: |
OLC1967983003 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1967983003 | ||
003 | DE-627 | ||
005 | 20230714171806.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/00268976.2014.970593 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1967983003 | ||
035 | |a (DE-599)GBVOLC1967983003 | ||
035 | |a (PRQ)c2406-af9a5dc9b4470929a86e93d15e14c4e0c5d4b668544519fb7140bbd06c90dd390 | ||
035 | |a (KEY)0082863720150000113000700703moleculardynamicssimulationontheconvectiveheattran | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 530 |q DNB |
100 | 1 | |a Ge, Song |e verfasserin |4 aut | |
245 | 1 | 2 | |a A molecular dynamics simulation on the convective heat transfer in nanochannels |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition. | ||
540 | |a Nutzungsrecht: © 2014 Taylor & Francis 2014 | ||
650 | 4 | |a molecular dynamics simulation | |
650 | 4 | |a Nusselt number | |
650 | 4 | |a nanochannel | |
650 | 4 | |a convective heat transfer | |
650 | 4 | |a Simulation | |
650 | 4 | |a Geometry | |
650 | 4 | |a Heat transfer | |
700 | 1 | |a Gu, Youwei |4 oth | |
700 | 1 | |a Chen, Min |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Molecular physics |d London : Taylor & Francis, 1958 |g 113(2015), 7, Seite 703-710 |w (DE-627)129602140 |w (DE-600)241517-3 |w (DE-576)015095878 |x 0026-8976 |7 nnns |
773 | 1 | 8 | |g volume:113 |g year:2015 |g number:7 |g pages:703-710 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/00268976.2014.970593 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/00268976.2014.970593 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1661794172 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 113 |j 2015 |e 7 |h 703-710 |
author_variant |
s g sg |
---|---|
matchkey_str |
article:00268976:2015----::mlclryaisiuainnhcnetvhata |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1080/00268976.2014.970593 doi PQ20160617 (DE-627)OLC1967983003 (DE-599)GBVOLC1967983003 (PRQ)c2406-af9a5dc9b4470929a86e93d15e14c4e0c5d4b668544519fb7140bbd06c90dd390 (KEY)0082863720150000113000700703moleculardynamicssimulationontheconvectiveheattran DE-627 ger DE-627 rakwb eng 570 530 DNB Ge, Song verfasserin aut A molecular dynamics simulation on the convective heat transfer in nanochannels 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition. Nutzungsrecht: © 2014 Taylor & Francis 2014 molecular dynamics simulation Nusselt number nanochannel convective heat transfer Simulation Geometry Heat transfer Gu, Youwei oth Chen, Min oth Enthalten in Molecular physics London : Taylor & Francis, 1958 113(2015), 7, Seite 703-710 (DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 0026-8976 nnns volume:113 year:2015 number:7 pages:703-710 http://dx.doi.org/10.1080/00268976.2014.970593 Volltext http://www.tandfonline.com/doi/abs/10.1080/00268976.2014.970593 http://search.proquest.com/docview/1661794172 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_20 GBV_ILN_59 GBV_ILN_70 AR 113 2015 7 703-710 |
spelling |
10.1080/00268976.2014.970593 doi PQ20160617 (DE-627)OLC1967983003 (DE-599)GBVOLC1967983003 (PRQ)c2406-af9a5dc9b4470929a86e93d15e14c4e0c5d4b668544519fb7140bbd06c90dd390 (KEY)0082863720150000113000700703moleculardynamicssimulationontheconvectiveheattran DE-627 ger DE-627 rakwb eng 570 530 DNB Ge, Song verfasserin aut A molecular dynamics simulation on the convective heat transfer in nanochannels 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition. Nutzungsrecht: © 2014 Taylor & Francis 2014 molecular dynamics simulation Nusselt number nanochannel convective heat transfer Simulation Geometry Heat transfer Gu, Youwei oth Chen, Min oth Enthalten in Molecular physics London : Taylor & Francis, 1958 113(2015), 7, Seite 703-710 (DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 0026-8976 nnns volume:113 year:2015 number:7 pages:703-710 http://dx.doi.org/10.1080/00268976.2014.970593 Volltext http://www.tandfonline.com/doi/abs/10.1080/00268976.2014.970593 http://search.proquest.com/docview/1661794172 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_20 GBV_ILN_59 GBV_ILN_70 AR 113 2015 7 703-710 |
allfields_unstemmed |
10.1080/00268976.2014.970593 doi PQ20160617 (DE-627)OLC1967983003 (DE-599)GBVOLC1967983003 (PRQ)c2406-af9a5dc9b4470929a86e93d15e14c4e0c5d4b668544519fb7140bbd06c90dd390 (KEY)0082863720150000113000700703moleculardynamicssimulationontheconvectiveheattran DE-627 ger DE-627 rakwb eng 570 530 DNB Ge, Song verfasserin aut A molecular dynamics simulation on the convective heat transfer in nanochannels 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition. Nutzungsrecht: © 2014 Taylor & Francis 2014 molecular dynamics simulation Nusselt number nanochannel convective heat transfer Simulation Geometry Heat transfer Gu, Youwei oth Chen, Min oth Enthalten in Molecular physics London : Taylor & Francis, 1958 113(2015), 7, Seite 703-710 (DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 0026-8976 nnns volume:113 year:2015 number:7 pages:703-710 http://dx.doi.org/10.1080/00268976.2014.970593 Volltext http://www.tandfonline.com/doi/abs/10.1080/00268976.2014.970593 http://search.proquest.com/docview/1661794172 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_20 GBV_ILN_59 GBV_ILN_70 AR 113 2015 7 703-710 |
allfieldsGer |
10.1080/00268976.2014.970593 doi PQ20160617 (DE-627)OLC1967983003 (DE-599)GBVOLC1967983003 (PRQ)c2406-af9a5dc9b4470929a86e93d15e14c4e0c5d4b668544519fb7140bbd06c90dd390 (KEY)0082863720150000113000700703moleculardynamicssimulationontheconvectiveheattran DE-627 ger DE-627 rakwb eng 570 530 DNB Ge, Song verfasserin aut A molecular dynamics simulation on the convective heat transfer in nanochannels 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition. Nutzungsrecht: © 2014 Taylor & Francis 2014 molecular dynamics simulation Nusselt number nanochannel convective heat transfer Simulation Geometry Heat transfer Gu, Youwei oth Chen, Min oth Enthalten in Molecular physics London : Taylor & Francis, 1958 113(2015), 7, Seite 703-710 (DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 0026-8976 nnns volume:113 year:2015 number:7 pages:703-710 http://dx.doi.org/10.1080/00268976.2014.970593 Volltext http://www.tandfonline.com/doi/abs/10.1080/00268976.2014.970593 http://search.proquest.com/docview/1661794172 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_20 GBV_ILN_59 GBV_ILN_70 AR 113 2015 7 703-710 |
allfieldsSound |
10.1080/00268976.2014.970593 doi PQ20160617 (DE-627)OLC1967983003 (DE-599)GBVOLC1967983003 (PRQ)c2406-af9a5dc9b4470929a86e93d15e14c4e0c5d4b668544519fb7140bbd06c90dd390 (KEY)0082863720150000113000700703moleculardynamicssimulationontheconvectiveheattran DE-627 ger DE-627 rakwb eng 570 530 DNB Ge, Song verfasserin aut A molecular dynamics simulation on the convective heat transfer in nanochannels 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition. Nutzungsrecht: © 2014 Taylor & Francis 2014 molecular dynamics simulation Nusselt number nanochannel convective heat transfer Simulation Geometry Heat transfer Gu, Youwei oth Chen, Min oth Enthalten in Molecular physics London : Taylor & Francis, 1958 113(2015), 7, Seite 703-710 (DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 0026-8976 nnns volume:113 year:2015 number:7 pages:703-710 http://dx.doi.org/10.1080/00268976.2014.970593 Volltext http://www.tandfonline.com/doi/abs/10.1080/00268976.2014.970593 http://search.proquest.com/docview/1661794172 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_20 GBV_ILN_59 GBV_ILN_70 AR 113 2015 7 703-710 |
language |
English |
source |
Enthalten in Molecular physics 113(2015), 7, Seite 703-710 volume:113 year:2015 number:7 pages:703-710 |
sourceStr |
Enthalten in Molecular physics 113(2015), 7, Seite 703-710 volume:113 year:2015 number:7 pages:703-710 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
molecular dynamics simulation Nusselt number nanochannel convective heat transfer Simulation Geometry Heat transfer |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Molecular physics |
authorswithroles_txt_mv |
Ge, Song @@aut@@ Gu, Youwei @@oth@@ Chen, Min @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129602140 |
dewey-sort |
3570 |
id |
OLC1967983003 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1967983003</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714171806.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00268976.2014.970593</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1967983003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1967983003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2406-af9a5dc9b4470929a86e93d15e14c4e0c5d4b668544519fb7140bbd06c90dd390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0082863720150000113000700703moleculardynamicssimulationontheconvectiveheattran</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ge, Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A molecular dynamics simulation on the convective heat transfer in nanochannels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2014 Taylor & Francis 2014</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molecular dynamics simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nusselt number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanochannel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convective heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Youwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular physics</subfield><subfield code="d">London : Taylor & Francis, 1958</subfield><subfield code="g">113(2015), 7, Seite 703-710</subfield><subfield code="w">(DE-627)129602140</subfield><subfield code="w">(DE-600)241517-3</subfield><subfield code="w">(DE-576)015095878</subfield><subfield code="x">0026-8976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:113</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:703-710</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/00268976.2014.970593</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/00268976.2014.970593</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1661794172</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">113</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="h">703-710</subfield></datafield></record></collection>
|
author |
Ge, Song |
spellingShingle |
Ge, Song ddc 570 misc molecular dynamics simulation misc Nusselt number misc nanochannel misc convective heat transfer misc Simulation misc Geometry misc Heat transfer A molecular dynamics simulation on the convective heat transfer in nanochannels |
authorStr |
Ge, Song |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129602140 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0026-8976 |
topic_title |
570 530 DNB A molecular dynamics simulation on the convective heat transfer in nanochannels molecular dynamics simulation Nusselt number nanochannel convective heat transfer Simulation Geometry Heat transfer |
topic |
ddc 570 misc molecular dynamics simulation misc Nusselt number misc nanochannel misc convective heat transfer misc Simulation misc Geometry misc Heat transfer |
topic_unstemmed |
ddc 570 misc molecular dynamics simulation misc Nusselt number misc nanochannel misc convective heat transfer misc Simulation misc Geometry misc Heat transfer |
topic_browse |
ddc 570 misc molecular dynamics simulation misc Nusselt number misc nanochannel misc convective heat transfer misc Simulation misc Geometry misc Heat transfer |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y g yg m c mc |
hierarchy_parent_title |
Molecular physics |
hierarchy_parent_id |
129602140 |
dewey-tens |
570 - Life sciences; biology 530 - Physics |
hierarchy_top_title |
Molecular physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129602140 (DE-600)241517-3 (DE-576)015095878 |
title |
A molecular dynamics simulation on the convective heat transfer in nanochannels |
ctrlnum |
(DE-627)OLC1967983003 (DE-599)GBVOLC1967983003 (PRQ)c2406-af9a5dc9b4470929a86e93d15e14c4e0c5d4b668544519fb7140bbd06c90dd390 (KEY)0082863720150000113000700703moleculardynamicssimulationontheconvectiveheattran |
title_full |
A molecular dynamics simulation on the convective heat transfer in nanochannels |
author_sort |
Ge, Song |
journal |
Molecular physics |
journalStr |
Molecular physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
703 |
author_browse |
Ge, Song |
container_volume |
113 |
class |
570 530 DNB |
format_se |
Aufsätze |
author-letter |
Ge, Song |
doi_str_mv |
10.1080/00268976.2014.970593 |
dewey-full |
570 530 |
title_sort |
molecular dynamics simulation on the convective heat transfer in nanochannels |
title_auth |
A molecular dynamics simulation on the convective heat transfer in nanochannels |
abstract |
The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition. |
abstractGer |
The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition. |
abstract_unstemmed |
The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_20 GBV_ILN_59 GBV_ILN_70 |
container_issue |
7 |
title_short |
A molecular dynamics simulation on the convective heat transfer in nanochannels |
url |
http://dx.doi.org/10.1080/00268976.2014.970593 http://www.tandfonline.com/doi/abs/10.1080/00268976.2014.970593 http://search.proquest.com/docview/1661794172 |
remote_bool |
false |
author2 |
Gu, Youwei Chen, Min |
author2Str |
Gu, Youwei Chen, Min |
ppnlink |
129602140 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1080/00268976.2014.970593 |
up_date |
2024-07-04T02:21:31.285Z |
_version_ |
1803613310848860160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1967983003</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714171806.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/00268976.2014.970593</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1967983003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1967983003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2406-af9a5dc9b4470929a86e93d15e14c4e0c5d4b668544519fb7140bbd06c90dd390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0082863720150000113000700703moleculardynamicssimulationontheconvectiveheattran</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ge, Song</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A molecular dynamics simulation on the convective heat transfer in nanochannels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The understanding of the flow and heat transfer processes for fluid through micro- and nanochannels becomes imperative due to its wide application in micro- and nano-fluidic devices. In this paper, the method to simulate the convective heat transfer process in molecular dynamics is improved based on a previous study. With this method, we simulate a warm dense fluid flowing through a cold parallel-plate nanochannel with constant wall temperature. The characteristics of the velocity and temperature fields are analysed. The temperature difference between the bulk average temperature of fluid and the wall temperature decreases in an exponential form along the flow direction. The Nusselt number for the laminar flow in parallel-plate nanochannel is smaller than its corresponding value at macroscale. It could be attributed to the temperature jump at the fluid-wall interface, which decreases the temperature gradient near the wall. The results also reveal that the heat transfer coefficient is related to the surface wettabilities, which differs from that in the macroscopic condition.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2014 Taylor & Francis 2014</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">molecular dynamics simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nusselt number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanochannel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convective heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gu, Youwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Min</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular physics</subfield><subfield code="d">London : Taylor & Francis, 1958</subfield><subfield code="g">113(2015), 7, Seite 703-710</subfield><subfield code="w">(DE-627)129602140</subfield><subfield code="w">(DE-600)241517-3</subfield><subfield code="w">(DE-576)015095878</subfield><subfield code="x">0026-8976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:113</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:703-710</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/00268976.2014.970593</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/00268976.2014.970593</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1661794172</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">113</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="h">703-710</subfield></datafield></record></collection>
|
score |
7.3988447 |