Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations
We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the indep...
Ausführliche Beschreibung
Autor*in: |
Zhanyou Ma [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Optimization - Reading [u.a] : Taylor & Francis, 1985, 64(2015), 12, Seite 2511-18 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2015 ; number:12 ; pages:2511-18 |
Links: |
---|
DOI / URN: |
10.1080/02331934.2013.811663 |
---|
Katalog-ID: |
OLC1968108157 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1968108157 | ||
003 | DE-627 | ||
005 | 20230714172018.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/02331934.2013.811663 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1968108157 | ||
035 | |a (DE-599)GBVOLC1968108157 | ||
035 | |a (PRQ)c1841-4498ad0ef3dc0e3072827db39e539e5a78ef1eecfaa75485d6823822d5e201f40 | ||
035 | |a (KEY)0092524120150000064001202511performanceandcostanalysisofgeomg1queuewithexhaust | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 28 |a 004 |q DE-101 |
082 | 0 | 4 | |a 510 |q AVZ |
100 | 0 | |a Zhanyou Ma |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases. | ||
650 | 4 | |a Parameter estimation | |
650 | 4 | |a Studies | |
650 | 4 | |a Queuing | |
650 | 4 | |a Markov analysis | |
650 | 4 | |a Cost analysis | |
700 | 0 | |a Wuyi Yue |4 oth | |
700 | 0 | |a Guanghong Cui |4 oth | |
700 | 0 | |a Yong Hao |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Optimization |d Reading [u.a] : Taylor & Francis, 1985 |g 64(2015), 12, Seite 2511-18 |w (DE-627)13041199X |w (DE-600)622846-X |w (DE-576)015914984 |x 0233-1934 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2015 |g number:12 |g pages:2511-18 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/02331934.2013.811663 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1735022756 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 64 |j 2015 |e 12 |h 2511-18 |
author_variant |
z m zm |
---|---|
matchkey_str |
article:02331934:2015----::efracadotnlssfem1uuwtehutvsrieu |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1080/02331934.2013.811663 doi PQ20160617 (DE-627)OLC1968108157 (DE-599)GBVOLC1968108157 (PRQ)c1841-4498ad0ef3dc0e3072827db39e539e5a78ef1eecfaa75485d6823822d5e201f40 (KEY)0092524120150000064001202511performanceandcostanalysisofgeomg1queuewithexhaust DE-627 ger DE-627 rakwb eng 28 004 DE-101 510 AVZ Zhanyou Ma verfasserin aut Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases. Parameter estimation Studies Queuing Markov analysis Cost analysis Wuyi Yue oth Guanghong Cui oth Yong Hao oth Enthalten in Optimization Reading [u.a] : Taylor & Francis, 1985 64(2015), 12, Seite 2511-18 (DE-627)13041199X (DE-600)622846-X (DE-576)015914984 0233-1934 nnns volume:64 year:2015 number:12 pages:2511-18 http://dx.doi.org/10.1080/02331934.2013.811663 Volltext http://search.proquest.com/docview/1735022756 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 AR 64 2015 12 2511-18 |
spelling |
10.1080/02331934.2013.811663 doi PQ20160617 (DE-627)OLC1968108157 (DE-599)GBVOLC1968108157 (PRQ)c1841-4498ad0ef3dc0e3072827db39e539e5a78ef1eecfaa75485d6823822d5e201f40 (KEY)0092524120150000064001202511performanceandcostanalysisofgeomg1queuewithexhaust DE-627 ger DE-627 rakwb eng 28 004 DE-101 510 AVZ Zhanyou Ma verfasserin aut Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases. Parameter estimation Studies Queuing Markov analysis Cost analysis Wuyi Yue oth Guanghong Cui oth Yong Hao oth Enthalten in Optimization Reading [u.a] : Taylor & Francis, 1985 64(2015), 12, Seite 2511-18 (DE-627)13041199X (DE-600)622846-X (DE-576)015914984 0233-1934 nnns volume:64 year:2015 number:12 pages:2511-18 http://dx.doi.org/10.1080/02331934.2013.811663 Volltext http://search.proquest.com/docview/1735022756 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 AR 64 2015 12 2511-18 |
allfields_unstemmed |
10.1080/02331934.2013.811663 doi PQ20160617 (DE-627)OLC1968108157 (DE-599)GBVOLC1968108157 (PRQ)c1841-4498ad0ef3dc0e3072827db39e539e5a78ef1eecfaa75485d6823822d5e201f40 (KEY)0092524120150000064001202511performanceandcostanalysisofgeomg1queuewithexhaust DE-627 ger DE-627 rakwb eng 28 004 DE-101 510 AVZ Zhanyou Ma verfasserin aut Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases. Parameter estimation Studies Queuing Markov analysis Cost analysis Wuyi Yue oth Guanghong Cui oth Yong Hao oth Enthalten in Optimization Reading [u.a] : Taylor & Francis, 1985 64(2015), 12, Seite 2511-18 (DE-627)13041199X (DE-600)622846-X (DE-576)015914984 0233-1934 nnns volume:64 year:2015 number:12 pages:2511-18 http://dx.doi.org/10.1080/02331934.2013.811663 Volltext http://search.proquest.com/docview/1735022756 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 AR 64 2015 12 2511-18 |
allfieldsGer |
10.1080/02331934.2013.811663 doi PQ20160617 (DE-627)OLC1968108157 (DE-599)GBVOLC1968108157 (PRQ)c1841-4498ad0ef3dc0e3072827db39e539e5a78ef1eecfaa75485d6823822d5e201f40 (KEY)0092524120150000064001202511performanceandcostanalysisofgeomg1queuewithexhaust DE-627 ger DE-627 rakwb eng 28 004 DE-101 510 AVZ Zhanyou Ma verfasserin aut Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases. Parameter estimation Studies Queuing Markov analysis Cost analysis Wuyi Yue oth Guanghong Cui oth Yong Hao oth Enthalten in Optimization Reading [u.a] : Taylor & Francis, 1985 64(2015), 12, Seite 2511-18 (DE-627)13041199X (DE-600)622846-X (DE-576)015914984 0233-1934 nnns volume:64 year:2015 number:12 pages:2511-18 http://dx.doi.org/10.1080/02331934.2013.811663 Volltext http://search.proquest.com/docview/1735022756 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 AR 64 2015 12 2511-18 |
allfieldsSound |
10.1080/02331934.2013.811663 doi PQ20160617 (DE-627)OLC1968108157 (DE-599)GBVOLC1968108157 (PRQ)c1841-4498ad0ef3dc0e3072827db39e539e5a78ef1eecfaa75485d6823822d5e201f40 (KEY)0092524120150000064001202511performanceandcostanalysisofgeomg1queuewithexhaust DE-627 ger DE-627 rakwb eng 28 004 DE-101 510 AVZ Zhanyou Ma verfasserin aut Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases. Parameter estimation Studies Queuing Markov analysis Cost analysis Wuyi Yue oth Guanghong Cui oth Yong Hao oth Enthalten in Optimization Reading [u.a] : Taylor & Francis, 1985 64(2015), 12, Seite 2511-18 (DE-627)13041199X (DE-600)622846-X (DE-576)015914984 0233-1934 nnns volume:64 year:2015 number:12 pages:2511-18 http://dx.doi.org/10.1080/02331934.2013.811663 Volltext http://search.proquest.com/docview/1735022756 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 AR 64 2015 12 2511-18 |
language |
English |
source |
Enthalten in Optimization 64(2015), 12, Seite 2511-18 volume:64 year:2015 number:12 pages:2511-18 |
sourceStr |
Enthalten in Optimization 64(2015), 12, Seite 2511-18 volume:64 year:2015 number:12 pages:2511-18 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Parameter estimation Studies Queuing Markov analysis Cost analysis |
dewey-raw |
28 |
isfreeaccess_bool |
false |
container_title |
Optimization |
authorswithroles_txt_mv |
Zhanyou Ma @@aut@@ Wuyi Yue @@oth@@ Guanghong Cui @@oth@@ Yong Hao @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
13041199X |
dewey-sort |
228 |
id |
OLC1968108157 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1968108157</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714172018.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02331934.2013.811663</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1968108157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1968108157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1841-4498ad0ef3dc0e3072827db39e539e5a78ef1eecfaa75485d6823822d5e201f40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0092524120150000064001202511performanceandcostanalysisofgeomg1queuewithexhaust</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">28</subfield><subfield code="a">004</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhanyou Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Queuing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wuyi Yue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guanghong Cui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optimization</subfield><subfield code="d">Reading [u.a] : Taylor & Francis, 1985</subfield><subfield code="g">64(2015), 12, Seite 2511-18</subfield><subfield code="w">(DE-627)13041199X</subfield><subfield code="w">(DE-600)622846-X</subfield><subfield code="w">(DE-576)015914984</subfield><subfield code="x">0233-1934</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:2511-18</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02331934.2013.811663</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1735022756</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2015</subfield><subfield code="e">12</subfield><subfield code="h">2511-18</subfield></datafield></record></collection>
|
author |
Zhanyou Ma |
spellingShingle |
Zhanyou Ma ddc 28 ddc 510 misc Parameter estimation misc Studies misc Queuing misc Markov analysis misc Cost analysis Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations |
authorStr |
Zhanyou Ma |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13041199X |
format |
Article |
dewey-ones |
028 - Reading & use of other information media 004 - Data processing & computer science 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0233-1934 |
topic_title |
28 004 DE-101 510 AVZ Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations Parameter estimation Studies Queuing Markov analysis Cost analysis |
topic |
ddc 28 ddc 510 misc Parameter estimation misc Studies misc Queuing misc Markov analysis misc Cost analysis |
topic_unstemmed |
ddc 28 ddc 510 misc Parameter estimation misc Studies misc Queuing misc Markov analysis misc Cost analysis |
topic_browse |
ddc 28 ddc 510 misc Parameter estimation misc Studies misc Queuing misc Markov analysis misc Cost analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
w y wy g c gc y h yh |
hierarchy_parent_title |
Optimization |
hierarchy_parent_id |
13041199X |
dewey-tens |
020 - Library & information sciences 000 - Computer science, knowledge & systems 510 - Mathematics |
hierarchy_top_title |
Optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13041199X (DE-600)622846-X (DE-576)015914984 |
title |
Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations |
ctrlnum |
(DE-627)OLC1968108157 (DE-599)GBVOLC1968108157 (PRQ)c1841-4498ad0ef3dc0e3072827db39e539e5a78ef1eecfaa75485d6823822d5e201f40 (KEY)0092524120150000064001202511performanceandcostanalysisofgeomg1queuewithexhaust |
title_full |
Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations |
author_sort |
Zhanyou Ma |
journal |
Optimization |
journalStr |
Optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
2511 |
author_browse |
Zhanyou Ma |
container_volume |
64 |
class |
28 004 DE-101 510 AVZ |
format_se |
Aufsätze |
author-letter |
Zhanyou Ma |
doi_str_mv |
10.1080/02331934.2013.811663 |
dewey-full |
28 004 510 |
title_sort |
performance and cost analysis of geom/g/1 queue with exhaustive service rule and multiple vacations |
title_auth |
Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations |
abstract |
We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases. |
abstractGer |
We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases. |
abstract_unstemmed |
We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_69 GBV_ILN_70 GBV_ILN_4700 |
container_issue |
12 |
title_short |
Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations |
url |
http://dx.doi.org/10.1080/02331934.2013.811663 http://search.proquest.com/docview/1735022756 |
remote_bool |
false |
author2 |
Wuyi Yue Guanghong Cui Yong Hao |
author2Str |
Wuyi Yue Guanghong Cui Yong Hao |
ppnlink |
13041199X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1080/02331934.2013.811663 |
up_date |
2024-07-04T02:38:44.673Z |
_version_ |
1803614394439958528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1968108157</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714172018.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/02331934.2013.811663</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1968108157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1968108157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1841-4498ad0ef3dc0e3072827db39e539e5a78ef1eecfaa75485d6823822d5e201f40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0092524120150000064001202511performanceandcostanalysisofgeomg1queuewithexhaust</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">28</subfield><subfield code="a">004</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhanyou Ma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance and cost analysis of Geom/G/1 queue with exhaustive service rule and multiple vacations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a new discrete-time Geom/G/1 queueing model with multiple vacations. We obtain the Probability Generating Function (PGF) of the queue length by using the method of an embedded Markov chain, and give the mean of the queue length. Then we study the PGF of the waiting time based on the independence of the arrival process and the waiting time. And we derive the PGF of the busy period, and the probabilities for the system being in a busy state or in a vacation state. Moreover, we formulate a cost model in order to determine the optimal expected parameter of the system. Finally, we show some numerical results to compare the means of the queue length and the waiting time in special cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parameter estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Queuing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost analysis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Wuyi Yue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Guanghong Cui</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optimization</subfield><subfield code="d">Reading [u.a] : Taylor & Francis, 1985</subfield><subfield code="g">64(2015), 12, Seite 2511-18</subfield><subfield code="w">(DE-627)13041199X</subfield><subfield code="w">(DE-600)622846-X</subfield><subfield code="w">(DE-576)015914984</subfield><subfield code="x">0233-1934</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:2511-18</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/02331934.2013.811663</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1735022756</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2015</subfield><subfield code="e">12</subfield><subfield code="h">2511-18</subfield></datafield></record></collection>
|
score |
7.401143 |