Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness
We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and K...
Ausführliche Beschreibung
Autor*in: |
Behn, Mark D [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geophysical research / B - Washington, DC : Union, 1978, 120(2015), 7, Seite 4863-4886 |
---|---|
Übergeordnetes Werk: |
volume:120 ; year:2015 ; number:7 ; pages:4863-4886 |
Links: |
---|
DOI / URN: |
10.1002/2015JB011885 |
---|
Katalog-ID: |
OLC1968741488 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1968741488 | ||
003 | DE-627 | ||
005 | 20220221191747.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2015JB011885 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1968741488 | ||
035 | |a (DE-599)GBVOLC1968741488 | ||
035 | |a (PRQ)p1848-31b1048a72cf01b59d40854698176b3d37ad3a57c4909f5ac88b8ed1ec22d69a0 | ||
035 | |a (KEY)0108436420150000120000704863meltingsystematicsinmidoceanridgebasaltsapplicatio | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a 38.70 |2 bkl | ||
100 | 1 | |a Behn, Mark D |e verfasserin |4 aut | |
245 | 1 | 0 | |a Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales | ||
540 | |a Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. | ||
650 | 4 | |a mantle melting | |
650 | 4 | |a mantle geodynamics | |
650 | 4 | |a mid‐ocean ridges | |
650 | 4 | |a Oceanography | |
650 | 4 | |a Geophysics | |
650 | 4 | |a Geochemistry | |
700 | 1 | |a Grove, Timothy L |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of geophysical research / B |d Washington, DC : Union, 1978 |g 120(2015), 7, Seite 4863-4886 |w (DE-627)129366382 |w (DE-600)161666-3 |w (DE-576)014740451 |x 0148-0227 |7 nnns |
773 | 1 | 8 | |g volume:120 |g year:2015 |g number:7 |g pages:4863-4886 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2015JB011885 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2015JB011885/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1703890828 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2279 | ||
936 | b | k | |a 38.70 |q AVZ |
951 | |a AR | ||
952 | |d 120 |j 2015 |e 7 |h 4863-4886 |
author_variant |
m d b md mdb |
---|---|
matchkey_str |
article:01480227:2015----::etnsseaisnioenigbslsplctooalgolssiemligoetgoavrainim |
hierarchy_sort_str |
2015 |
bklnumber |
38.70 |
publishDate |
2015 |
allfields |
10.1002/2015JB011885 doi PQ20160617 (DE-627)OLC1968741488 (DE-599)GBVOLC1968741488 (PRQ)p1848-31b1048a72cf01b59d40854698176b3d37ad3a57c4909f5ac88b8ed1ec22d69a0 (KEY)0108436420150000120000704863meltingsystematicsinmidoceanridgebasaltsapplicatio DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Behn, Mark D verfasserin aut Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. mantle melting mantle geodynamics mid‐ocean ridges Oceanography Geophysics Geochemistry Grove, Timothy L oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 120(2015), 7, Seite 4863-4886 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:120 year:2015 number:7 pages:4863-4886 http://dx.doi.org/10.1002/2015JB011885 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JB011885/abstract http://search.proquest.com/docview/1703890828 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 120 2015 7 4863-4886 |
spelling |
10.1002/2015JB011885 doi PQ20160617 (DE-627)OLC1968741488 (DE-599)GBVOLC1968741488 (PRQ)p1848-31b1048a72cf01b59d40854698176b3d37ad3a57c4909f5ac88b8ed1ec22d69a0 (KEY)0108436420150000120000704863meltingsystematicsinmidoceanridgebasaltsapplicatio DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Behn, Mark D verfasserin aut Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. mantle melting mantle geodynamics mid‐ocean ridges Oceanography Geophysics Geochemistry Grove, Timothy L oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 120(2015), 7, Seite 4863-4886 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:120 year:2015 number:7 pages:4863-4886 http://dx.doi.org/10.1002/2015JB011885 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JB011885/abstract http://search.proquest.com/docview/1703890828 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 120 2015 7 4863-4886 |
allfields_unstemmed |
10.1002/2015JB011885 doi PQ20160617 (DE-627)OLC1968741488 (DE-599)GBVOLC1968741488 (PRQ)p1848-31b1048a72cf01b59d40854698176b3d37ad3a57c4909f5ac88b8ed1ec22d69a0 (KEY)0108436420150000120000704863meltingsystematicsinmidoceanridgebasaltsapplicatio DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Behn, Mark D verfasserin aut Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. mantle melting mantle geodynamics mid‐ocean ridges Oceanography Geophysics Geochemistry Grove, Timothy L oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 120(2015), 7, Seite 4863-4886 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:120 year:2015 number:7 pages:4863-4886 http://dx.doi.org/10.1002/2015JB011885 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JB011885/abstract http://search.proquest.com/docview/1703890828 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 120 2015 7 4863-4886 |
allfieldsGer |
10.1002/2015JB011885 doi PQ20160617 (DE-627)OLC1968741488 (DE-599)GBVOLC1968741488 (PRQ)p1848-31b1048a72cf01b59d40854698176b3d37ad3a57c4909f5ac88b8ed1ec22d69a0 (KEY)0108436420150000120000704863meltingsystematicsinmidoceanridgebasaltsapplicatio DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Behn, Mark D verfasserin aut Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. mantle melting mantle geodynamics mid‐ocean ridges Oceanography Geophysics Geochemistry Grove, Timothy L oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 120(2015), 7, Seite 4863-4886 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:120 year:2015 number:7 pages:4863-4886 http://dx.doi.org/10.1002/2015JB011885 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JB011885/abstract http://search.proquest.com/docview/1703890828 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 120 2015 7 4863-4886 |
allfieldsSound |
10.1002/2015JB011885 doi PQ20160617 (DE-627)OLC1968741488 (DE-599)GBVOLC1968741488 (PRQ)p1848-31b1048a72cf01b59d40854698176b3d37ad3a57c4909f5ac88b8ed1ec22d69a0 (KEY)0108436420150000120000704863meltingsystematicsinmidoceanridgebasaltsapplicatio DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Behn, Mark D verfasserin aut Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved. mantle melting mantle geodynamics mid‐ocean ridges Oceanography Geophysics Geochemistry Grove, Timothy L oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 120(2015), 7, Seite 4863-4886 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:120 year:2015 number:7 pages:4863-4886 http://dx.doi.org/10.1002/2015JB011885 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JB011885/abstract http://search.proquest.com/docview/1703890828 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 120 2015 7 4863-4886 |
language |
English |
source |
Enthalten in Journal of geophysical research / B 120(2015), 7, Seite 4863-4886 volume:120 year:2015 number:7 pages:4863-4886 |
sourceStr |
Enthalten in Journal of geophysical research / B 120(2015), 7, Seite 4863-4886 volume:120 year:2015 number:7 pages:4863-4886 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
mantle melting mantle geodynamics mid‐ocean ridges Oceanography Geophysics Geochemistry |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of geophysical research / B |
authorswithroles_txt_mv |
Behn, Mark D @@aut@@ Grove, Timothy L @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129366382 |
dewey-sort |
3550 |
id |
OLC1968741488 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1968741488</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221191747.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2015JB011885</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1968741488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1968741488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1848-31b1048a72cf01b59d40854698176b3d37ad3a57c4909f5ac88b8ed1ec22d69a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108436420150000120000704863meltingsystematicsinmidoceanridgebasaltsapplicatio</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Behn, Mark D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mantle melting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mantle geodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mid‐ocean ridges</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oceanography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geochemistry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grove, Timothy L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geophysical research / B</subfield><subfield code="d">Washington, DC : Union, 1978</subfield><subfield code="g">120(2015), 7, Seite 4863-4886</subfield><subfield code="w">(DE-627)129366382</subfield><subfield code="w">(DE-600)161666-3</subfield><subfield code="w">(DE-576)014740451</subfield><subfield code="x">0148-0227</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:4863-4886</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2015JB011885</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2015JB011885/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1703890828</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="h">4863-4886</subfield></datafield></record></collection>
|
author |
Behn, Mark D |
spellingShingle |
Behn, Mark D ddc 550 bkl 38.70 misc mantle melting misc mantle geodynamics misc mid‐ocean ridges misc Oceanography misc Geophysics misc Geochemistry Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness |
authorStr |
Behn, Mark D |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129366382 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0148-0227 |
topic_title |
550 DNB 38.70 bkl Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness mantle melting mantle geodynamics mid‐ocean ridges Oceanography Geophysics Geochemistry |
topic |
ddc 550 bkl 38.70 misc mantle melting misc mantle geodynamics misc mid‐ocean ridges misc Oceanography misc Geophysics misc Geochemistry |
topic_unstemmed |
ddc 550 bkl 38.70 misc mantle melting misc mantle geodynamics misc mid‐ocean ridges misc Oceanography misc Geophysics misc Geochemistry |
topic_browse |
ddc 550 bkl 38.70 misc mantle melting misc mantle geodynamics misc mid‐ocean ridges misc Oceanography misc Geophysics misc Geochemistry |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t l g tl tlg |
hierarchy_parent_title |
Journal of geophysical research / B |
hierarchy_parent_id |
129366382 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of geophysical research / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 |
title |
Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness |
ctrlnum |
(DE-627)OLC1968741488 (DE-599)GBVOLC1968741488 (PRQ)p1848-31b1048a72cf01b59d40854698176b3d37ad3a57c4909f5ac88b8ed1ec22d69a0 (KEY)0108436420150000120000704863meltingsystematicsinmidoceanridgebasaltsapplicatio |
title_full |
Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness |
author_sort |
Behn, Mark D |
journal |
Journal of geophysical research / B |
journalStr |
Journal of geophysical research / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
4863 |
author_browse |
Behn, Mark D |
container_volume |
120 |
class |
550 DNB 38.70 bkl |
format_se |
Aufsätze |
author-letter |
Behn, Mark D |
doi_str_mv |
10.1002/2015JB011885 |
dewey-full |
550 |
title_sort |
melting systematics in mid‐ocean ridge basalts: application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness |
title_auth |
Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness |
abstract |
We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales |
abstractGer |
We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales |
abstract_unstemmed |
We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 |
container_issue |
7 |
title_short |
Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness |
url |
http://dx.doi.org/10.1002/2015JB011885 http://onlinelibrary.wiley.com/doi/10.1002/2015JB011885/abstract http://search.proquest.com/docview/1703890828 |
remote_bool |
false |
author2 |
Grove, Timothy L |
author2Str |
Grove, Timothy L |
ppnlink |
129366382 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1002/2015JB011885 |
up_date |
2024-07-04T04:04:34.467Z |
_version_ |
1803619794398740480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1968741488</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221191747.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2015JB011885</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1968741488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1968741488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1848-31b1048a72cf01b59d40854698176b3d37ad3a57c4909f5ac88b8ed1ec22d69a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108436420150000120000704863meltingsystematicsinmidoceanridgebasaltsapplicatio</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Behn, Mark D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Melting systematics in mid‐ocean ridge basalts: Application of a plagioclase‐spinel melting model to global variations in major element chemistry and crustal thickness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present a new model for anhydrous melting in the spinel and plagioclase stability fields that provides enhanced predictive capabilities for the major element compositional variability found in mid‐ocean ridge basalts (MORBs). The model is built on the formulation of Kinzler and Grove (1992) and Kinzler (1997) but incorporates new experimental data collected since these calibrations. The melting model is coupled to geodynamic simulations of mantle flow and mid‐ocean ridge temperature structure to investigate global variations in MORB chemistry and crustal thickness as a function of mantle potential temperature, spreading rate, mantle composition, and the pattern(s) of melt migration. While the initiation of melting is controlled by mantle temperature, the cessation of melting is primarily determined by spreading rate, which controls the thickness of the lithospheric lid, and not by the exhaustion of clinopyroxene. Spreading rate has the greatest influence on MORB compositions at slow to ultraslow spreading rates (<2 cm/yr half rate), where the thermal boundary layer becomes thicker than the oceanic crust. A key aspect of our approach is that we incorporate evidence from both MORB major element compositions and seismically determined crustal thicknesses to constrain global variations in mantle melting parameters. Specifically, we show that to explain the global data set of crustal thickness, Na 8 , Fe 8 , Si 8 , Ca 8 /Al 8 , and K 8 /Ti 8 (oxides normalized to 8 wt % MgO) require a relatively narrow zone over which melts are pooled to the ridge axis. In all cases, our preferred model involves melt transport to the ridge axis over relatively short horizontal length scales (~25 km). This implies that although melting occurs over a wide region beneath the ridge axis, up to 20–40% of the total melt volume is not extracted and will eventually refreeze and refertilize the lithosphere. We find that the temperature range required to explain the global geochemical and geophysical data sets is 1300°C to 1450°C. Finally, a small subset of the global data is best modeled as melts of a depleted mantle source composition (e.g., depleted MORB mantle—2% melt). We have created a new model for mid‐ocean ridge melting Model can reproduce global MORB geochemistry Melts are transported to the ridge over short length scales</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2015. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mantle melting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mantle geodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mid‐ocean ridges</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oceanography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geochemistry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grove, Timothy L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geophysical research / B</subfield><subfield code="d">Washington, DC : Union, 1978</subfield><subfield code="g">120(2015), 7, Seite 4863-4886</subfield><subfield code="w">(DE-627)129366382</subfield><subfield code="w">(DE-600)161666-3</subfield><subfield code="w">(DE-576)014740451</subfield><subfield code="x">0148-0227</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:4863-4886</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2015JB011885</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2015JB011885/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1703890828</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield><subfield code="j">2015</subfield><subfield code="e">7</subfield><subfield code="h">4863-4886</subfield></datafield></record></collection>
|
score |
7.4010057 |