Associating divisors with quadratic differentials on Klein surfaces
We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface.
Autor*in: |
Roşiu, Monica [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2014 Taylor & Francis 2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Complex variables and elliptic equations - Abingdon : Taylor & Francis, 2006, 60(2015), 2, Seite 181-190 |
---|---|
Übergeordnetes Werk: |
volume:60 ; year:2015 ; number:2 ; pages:181-190 |
Links: |
---|
DOI / URN: |
10.1080/17476933.2014.904558 |
---|
Katalog-ID: |
OLC1969053798 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1969053798 | ||
003 | DE-627 | ||
005 | 20220215192412.0 | ||
007 | tu | ||
008 | 160206s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/17476933.2014.904558 |2 doi | |
028 | 5 | 2 | |a PQ20160617 |
035 | |a (DE-627)OLC1969053798 | ||
035 | |a (DE-599)GBVOLC1969053798 | ||
035 | |a (PRQ)c2103-6ffaccf64dc338e765e32b3fedba000b54d7f758661ad3ca8131e06307dc11e70 | ||
035 | |a (KEY)0114050720150000060000200181associatingdivisorswithquadraticdifferentialsonkle | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ZDB |
084 | |a 31.42 |2 bkl | ||
084 | |a 31.43 |2 bkl | ||
100 | 1 | |a Roşiu, Monica |e verfasserin |4 aut | |
245 | 1 | 0 | |a Associating divisors with quadratic differentials on Klein surfaces |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface. | ||
540 | |a Nutzungsrecht: © 2014 Taylor & Francis 2014 | ||
650 | 4 | |a 30F30 | |
650 | 4 | |a 30F50 | |
650 | 4 | |a automorphic form | |
650 | 4 | |a Klein surface | |
650 | 4 | |a meromorphic quadratic differential | |
650 | 4 | |a 30F35 | |
773 | 0 | 8 | |i Enthalten in |t Complex variables and elliptic equations |d Abingdon : Taylor & Francis, 2006 |g 60(2015), 2, Seite 181-190 |w (DE-627)505917475 |w (DE-600)2217838-7 |w (DE-576)494067217 |x 1747-6933 |7 nnns |
773 | 1 | 8 | |g volume:60 |g year:2015 |g number:2 |g pages:181-190 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/17476933.2014.904558 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/17476933.2014.904558 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1644471231 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
936 | b | k | |a 31.42 |q AVZ |
936 | b | k | |a 31.43 |q AVZ |
951 | |a AR | ||
952 | |d 60 |j 2015 |e 2 |h 181-190 |
author_variant |
m r mr |
---|---|
matchkey_str |
article:17476933:2015----::soitndvsrwtqartcifrnil |
hierarchy_sort_str |
2015 |
bklnumber |
31.42 31.43 |
publishDate |
2015 |
allfields |
10.1080/17476933.2014.904558 doi PQ20160617 (DE-627)OLC1969053798 (DE-599)GBVOLC1969053798 (PRQ)c2103-6ffaccf64dc338e765e32b3fedba000b54d7f758661ad3ca8131e06307dc11e70 (KEY)0114050720150000060000200181associatingdivisorswithquadraticdifferentialsonkle DE-627 ger DE-627 rakwb eng 510 ZDB 31.42 bkl 31.43 bkl Roşiu, Monica verfasserin aut Associating divisors with quadratic differentials on Klein surfaces 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface. Nutzungsrecht: © 2014 Taylor & Francis 2014 30F30 30F50 automorphic form Klein surface meromorphic quadratic differential 30F35 Enthalten in Complex variables and elliptic equations Abingdon : Taylor & Francis, 2006 60(2015), 2, Seite 181-190 (DE-627)505917475 (DE-600)2217838-7 (DE-576)494067217 1747-6933 nnns volume:60 year:2015 number:2 pages:181-190 http://dx.doi.org/10.1080/17476933.2014.904558 Volltext http://www.tandfonline.com/doi/abs/10.1080/17476933.2014.904558 http://search.proquest.com/docview/1644471231 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.42 AVZ 31.43 AVZ AR 60 2015 2 181-190 |
spelling |
10.1080/17476933.2014.904558 doi PQ20160617 (DE-627)OLC1969053798 (DE-599)GBVOLC1969053798 (PRQ)c2103-6ffaccf64dc338e765e32b3fedba000b54d7f758661ad3ca8131e06307dc11e70 (KEY)0114050720150000060000200181associatingdivisorswithquadraticdifferentialsonkle DE-627 ger DE-627 rakwb eng 510 ZDB 31.42 bkl 31.43 bkl Roşiu, Monica verfasserin aut Associating divisors with quadratic differentials on Klein surfaces 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface. Nutzungsrecht: © 2014 Taylor & Francis 2014 30F30 30F50 automorphic form Klein surface meromorphic quadratic differential 30F35 Enthalten in Complex variables and elliptic equations Abingdon : Taylor & Francis, 2006 60(2015), 2, Seite 181-190 (DE-627)505917475 (DE-600)2217838-7 (DE-576)494067217 1747-6933 nnns volume:60 year:2015 number:2 pages:181-190 http://dx.doi.org/10.1080/17476933.2014.904558 Volltext http://www.tandfonline.com/doi/abs/10.1080/17476933.2014.904558 http://search.proquest.com/docview/1644471231 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.42 AVZ 31.43 AVZ AR 60 2015 2 181-190 |
allfields_unstemmed |
10.1080/17476933.2014.904558 doi PQ20160617 (DE-627)OLC1969053798 (DE-599)GBVOLC1969053798 (PRQ)c2103-6ffaccf64dc338e765e32b3fedba000b54d7f758661ad3ca8131e06307dc11e70 (KEY)0114050720150000060000200181associatingdivisorswithquadraticdifferentialsonkle DE-627 ger DE-627 rakwb eng 510 ZDB 31.42 bkl 31.43 bkl Roşiu, Monica verfasserin aut Associating divisors with quadratic differentials on Klein surfaces 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface. Nutzungsrecht: © 2014 Taylor & Francis 2014 30F30 30F50 automorphic form Klein surface meromorphic quadratic differential 30F35 Enthalten in Complex variables and elliptic equations Abingdon : Taylor & Francis, 2006 60(2015), 2, Seite 181-190 (DE-627)505917475 (DE-600)2217838-7 (DE-576)494067217 1747-6933 nnns volume:60 year:2015 number:2 pages:181-190 http://dx.doi.org/10.1080/17476933.2014.904558 Volltext http://www.tandfonline.com/doi/abs/10.1080/17476933.2014.904558 http://search.proquest.com/docview/1644471231 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.42 AVZ 31.43 AVZ AR 60 2015 2 181-190 |
allfieldsGer |
10.1080/17476933.2014.904558 doi PQ20160617 (DE-627)OLC1969053798 (DE-599)GBVOLC1969053798 (PRQ)c2103-6ffaccf64dc338e765e32b3fedba000b54d7f758661ad3ca8131e06307dc11e70 (KEY)0114050720150000060000200181associatingdivisorswithquadraticdifferentialsonkle DE-627 ger DE-627 rakwb eng 510 ZDB 31.42 bkl 31.43 bkl Roşiu, Monica verfasserin aut Associating divisors with quadratic differentials on Klein surfaces 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface. Nutzungsrecht: © 2014 Taylor & Francis 2014 30F30 30F50 automorphic form Klein surface meromorphic quadratic differential 30F35 Enthalten in Complex variables and elliptic equations Abingdon : Taylor & Francis, 2006 60(2015), 2, Seite 181-190 (DE-627)505917475 (DE-600)2217838-7 (DE-576)494067217 1747-6933 nnns volume:60 year:2015 number:2 pages:181-190 http://dx.doi.org/10.1080/17476933.2014.904558 Volltext http://www.tandfonline.com/doi/abs/10.1080/17476933.2014.904558 http://search.proquest.com/docview/1644471231 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.42 AVZ 31.43 AVZ AR 60 2015 2 181-190 |
allfieldsSound |
10.1080/17476933.2014.904558 doi PQ20160617 (DE-627)OLC1969053798 (DE-599)GBVOLC1969053798 (PRQ)c2103-6ffaccf64dc338e765e32b3fedba000b54d7f758661ad3ca8131e06307dc11e70 (KEY)0114050720150000060000200181associatingdivisorswithquadraticdifferentialsonkle DE-627 ger DE-627 rakwb eng 510 ZDB 31.42 bkl 31.43 bkl Roşiu, Monica verfasserin aut Associating divisors with quadratic differentials on Klein surfaces 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface. Nutzungsrecht: © 2014 Taylor & Francis 2014 30F30 30F50 automorphic form Klein surface meromorphic quadratic differential 30F35 Enthalten in Complex variables and elliptic equations Abingdon : Taylor & Francis, 2006 60(2015), 2, Seite 181-190 (DE-627)505917475 (DE-600)2217838-7 (DE-576)494067217 1747-6933 nnns volume:60 year:2015 number:2 pages:181-190 http://dx.doi.org/10.1080/17476933.2014.904558 Volltext http://www.tandfonline.com/doi/abs/10.1080/17476933.2014.904558 http://search.proquest.com/docview/1644471231 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.42 AVZ 31.43 AVZ AR 60 2015 2 181-190 |
language |
English |
source |
Enthalten in Complex variables and elliptic equations 60(2015), 2, Seite 181-190 volume:60 year:2015 number:2 pages:181-190 |
sourceStr |
Enthalten in Complex variables and elliptic equations 60(2015), 2, Seite 181-190 volume:60 year:2015 number:2 pages:181-190 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
30F30 30F50 automorphic form Klein surface meromorphic quadratic differential 30F35 |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Complex variables and elliptic equations |
authorswithroles_txt_mv |
Roşiu, Monica @@aut@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
505917475 |
dewey-sort |
3510 |
id |
OLC1969053798 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1969053798</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215192412.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/17476933.2014.904558</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1969053798</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1969053798</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2103-6ffaccf64dc338e765e32b3fedba000b54d7f758661ad3ca8131e06307dc11e70</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0114050720150000060000200181associatingdivisorswithquadraticdifferentialsonkle</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roşiu, Monica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Associating divisors with quadratic differentials on Klein surfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2014 Taylor & Francis 2014</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">30F30</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">30F50</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automorphic form</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Klein surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">meromorphic quadratic differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">30F35</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Complex variables and elliptic equations</subfield><subfield code="d">Abingdon : Taylor & Francis, 2006</subfield><subfield code="g">60(2015), 2, Seite 181-190</subfield><subfield code="w">(DE-627)505917475</subfield><subfield code="w">(DE-600)2217838-7</subfield><subfield code="w">(DE-576)494067217</subfield><subfield code="x">1747-6933</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:181-190</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/17476933.2014.904558</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/17476933.2014.904558</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1644471231</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.42</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.43</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">181-190</subfield></datafield></record></collection>
|
author |
Roşiu, Monica |
spellingShingle |
Roşiu, Monica ddc 510 bkl 31.42 bkl 31.43 misc 30F30 misc 30F50 misc automorphic form misc Klein surface misc meromorphic quadratic differential misc 30F35 Associating divisors with quadratic differentials on Klein surfaces |
authorStr |
Roşiu, Monica |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)505917475 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1747-6933 |
topic_title |
510 ZDB 31.42 bkl 31.43 bkl Associating divisors with quadratic differentials on Klein surfaces 30F30 30F50 automorphic form Klein surface meromorphic quadratic differential 30F35 |
topic |
ddc 510 bkl 31.42 bkl 31.43 misc 30F30 misc 30F50 misc automorphic form misc Klein surface misc meromorphic quadratic differential misc 30F35 |
topic_unstemmed |
ddc 510 bkl 31.42 bkl 31.43 misc 30F30 misc 30F50 misc automorphic form misc Klein surface misc meromorphic quadratic differential misc 30F35 |
topic_browse |
ddc 510 bkl 31.42 bkl 31.43 misc 30F30 misc 30F50 misc automorphic form misc Klein surface misc meromorphic quadratic differential misc 30F35 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Complex variables and elliptic equations |
hierarchy_parent_id |
505917475 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Complex variables and elliptic equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)505917475 (DE-600)2217838-7 (DE-576)494067217 |
title |
Associating divisors with quadratic differentials on Klein surfaces |
ctrlnum |
(DE-627)OLC1969053798 (DE-599)GBVOLC1969053798 (PRQ)c2103-6ffaccf64dc338e765e32b3fedba000b54d7f758661ad3ca8131e06307dc11e70 (KEY)0114050720150000060000200181associatingdivisorswithquadraticdifferentialsonkle |
title_full |
Associating divisors with quadratic differentials on Klein surfaces |
author_sort |
Roşiu, Monica |
journal |
Complex variables and elliptic equations |
journalStr |
Complex variables and elliptic equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
181 |
author_browse |
Roşiu, Monica |
container_volume |
60 |
class |
510 ZDB 31.42 bkl 31.43 bkl |
format_se |
Aufsätze |
author-letter |
Roşiu, Monica |
doi_str_mv |
10.1080/17476933.2014.904558 |
dewey-full |
510 |
title_sort |
associating divisors with quadratic differentials on klein surfaces |
title_auth |
Associating divisors with quadratic differentials on Klein surfaces |
abstract |
We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface. |
abstractGer |
We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface. |
abstract_unstemmed |
We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
2 |
title_short |
Associating divisors with quadratic differentials on Klein surfaces |
url |
http://dx.doi.org/10.1080/17476933.2014.904558 http://www.tandfonline.com/doi/abs/10.1080/17476933.2014.904558 http://search.proquest.com/docview/1644471231 |
remote_bool |
false |
ppnlink |
505917475 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1080/17476933.2014.904558 |
up_date |
2024-07-04T04:45:15.724Z |
_version_ |
1803622354221268992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1969053798</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215192412.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160206s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/17476933.2014.904558</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1969053798</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1969053798</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2103-6ffaccf64dc338e765e32b3fedba000b54d7f758661ad3ca8131e06307dc11e70</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0114050720150000060000200181associatingdivisorswithquadraticdifferentialsonkle</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roşiu, Monica</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Associating divisors with quadratic differentials on Klein surfaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We extend the notion and basic properties of quadratic differential divisors to a Klein surface, using the corresponding form's divisors from the double cover of the Klein surface.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2014 Taylor & Francis 2014</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">30F30</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">30F50</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automorphic form</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Klein surface</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">meromorphic quadratic differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">30F35</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Complex variables and elliptic equations</subfield><subfield code="d">Abingdon : Taylor & Francis, 2006</subfield><subfield code="g">60(2015), 2, Seite 181-190</subfield><subfield code="w">(DE-627)505917475</subfield><subfield code="w">(DE-600)2217838-7</subfield><subfield code="w">(DE-576)494067217</subfield><subfield code="x">1747-6933</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:181-190</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/17476933.2014.904558</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/17476933.2014.904558</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1644471231</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.42</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.43</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2015</subfield><subfield code="e">2</subfield><subfield code="h">181-190</subfield></datafield></record></collection>
|
score |
7.3988514 |