Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials
A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape...
Ausführliche Beschreibung
Autor*in: |
Liew, T C H [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Physical review letters - Ridge, NY : American Physical Society, 1958, 114(2015), 11 |
---|---|
Übergeordnetes Werk: |
volume:114 ; year:2015 ; number:11 |
Links: |
---|
DOI / URN: |
10.1103/PhysRevLett.114.118101 |
---|
Katalog-ID: |
OLC1969284471 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1969284471 | ||
003 | DE-627 | ||
005 | 20220224042613.0 | ||
007 | tu | ||
008 | 160211s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1103/PhysRevLett.114.118101 |2 doi | |
028 | 5 | 2 | |a PQ20160211 |
035 | |a (DE-627)OLC1969284471 | ||
035 | |a (DE-599)GBVOLC1969284471 | ||
035 | |a (PRQ)c1303-8fbb6ae8270a49108bc6d9d16d8ddbe7b4a59272cc50eb53ee06c54e4e26dd7f0 | ||
035 | |a (KEY)0009201020150000114001100000perceptronswithhebbianlearningbasedonwaveensembles | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a UA 1000 |q AVZ |2 rvk | ||
100 | 1 | |a Liew, T C H |e verfasserin |4 aut | |
245 | 1 | 0 | |a Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions. | ||
650 | 4 | |a Optics and Photonics - methods | |
700 | 1 | |a Espinosa-Ortega, T |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Physical review letters |d Ridge, NY : American Physical Society, 1958 |g 114(2015), 11 |w (DE-627)129503959 |w (DE-600)208853-8 |w (DE-576)014907267 |x 0031-9007 |7 nnns |
773 | 1 | 8 | |g volume:114 |g year:2015 |g number:11 |
856 | 4 | 1 | |u http://dx.doi.org/10.1103/PhysRevLett.114.118101 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25839313 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2095 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2286 | ||
936 | r | v | |a UA 1000 |
951 | |a AR | ||
952 | |d 114 |j 2015 |e 11 |
author_variant |
t c h l tch tchl |
---|---|
matchkey_str |
article:00319007:2015----::ecprnwthbinerigaeowvesmlsnptal |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1103/PhysRevLett.114.118101 doi PQ20160211 (DE-627)OLC1969284471 (DE-599)GBVOLC1969284471 (PRQ)c1303-8fbb6ae8270a49108bc6d9d16d8ddbe7b4a59272cc50eb53ee06c54e4e26dd7f0 (KEY)0009201020150000114001100000perceptronswithhebbianlearningbasedonwaveensembles DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Liew, T C H verfasserin aut Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions. Optics and Photonics - methods Espinosa-Ortega, T oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 114(2015), 11 (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns volume:114 year:2015 number:11 http://dx.doi.org/10.1103/PhysRevLett.114.118101 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25839313 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 114 2015 11 |
spelling |
10.1103/PhysRevLett.114.118101 doi PQ20160211 (DE-627)OLC1969284471 (DE-599)GBVOLC1969284471 (PRQ)c1303-8fbb6ae8270a49108bc6d9d16d8ddbe7b4a59272cc50eb53ee06c54e4e26dd7f0 (KEY)0009201020150000114001100000perceptronswithhebbianlearningbasedonwaveensembles DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Liew, T C H verfasserin aut Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions. Optics and Photonics - methods Espinosa-Ortega, T oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 114(2015), 11 (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns volume:114 year:2015 number:11 http://dx.doi.org/10.1103/PhysRevLett.114.118101 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25839313 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 114 2015 11 |
allfields_unstemmed |
10.1103/PhysRevLett.114.118101 doi PQ20160211 (DE-627)OLC1969284471 (DE-599)GBVOLC1969284471 (PRQ)c1303-8fbb6ae8270a49108bc6d9d16d8ddbe7b4a59272cc50eb53ee06c54e4e26dd7f0 (KEY)0009201020150000114001100000perceptronswithhebbianlearningbasedonwaveensembles DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Liew, T C H verfasserin aut Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions. Optics and Photonics - methods Espinosa-Ortega, T oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 114(2015), 11 (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns volume:114 year:2015 number:11 http://dx.doi.org/10.1103/PhysRevLett.114.118101 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25839313 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 114 2015 11 |
allfieldsGer |
10.1103/PhysRevLett.114.118101 doi PQ20160211 (DE-627)OLC1969284471 (DE-599)GBVOLC1969284471 (PRQ)c1303-8fbb6ae8270a49108bc6d9d16d8ddbe7b4a59272cc50eb53ee06c54e4e26dd7f0 (KEY)0009201020150000114001100000perceptronswithhebbianlearningbasedonwaveensembles DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Liew, T C H verfasserin aut Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions. Optics and Photonics - methods Espinosa-Ortega, T oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 114(2015), 11 (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns volume:114 year:2015 number:11 http://dx.doi.org/10.1103/PhysRevLett.114.118101 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25839313 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 114 2015 11 |
allfieldsSound |
10.1103/PhysRevLett.114.118101 doi PQ20160211 (DE-627)OLC1969284471 (DE-599)GBVOLC1969284471 (PRQ)c1303-8fbb6ae8270a49108bc6d9d16d8ddbe7b4a59272cc50eb53ee06c54e4e26dd7f0 (KEY)0009201020150000114001100000perceptronswithhebbianlearningbasedonwaveensembles DE-627 ger DE-627 rakwb eng 550 DNB UA 1000 AVZ rvk Liew, T C H verfasserin aut Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions. Optics and Photonics - methods Espinosa-Ortega, T oth Enthalten in Physical review letters Ridge, NY : American Physical Society, 1958 114(2015), 11 (DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 0031-9007 nnns volume:114 year:2015 number:11 http://dx.doi.org/10.1103/PhysRevLett.114.118101 Volltext http://www.ncbi.nlm.nih.gov/pubmed/25839313 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 UA 1000 AR 114 2015 11 |
language |
English |
source |
Enthalten in Physical review letters 114(2015), 11 volume:114 year:2015 number:11 |
sourceStr |
Enthalten in Physical review letters 114(2015), 11 volume:114 year:2015 number:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Optics and Photonics - methods |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Physical review letters |
authorswithroles_txt_mv |
Liew, T C H @@aut@@ Espinosa-Ortega, T @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129503959 |
dewey-sort |
3550 |
id |
OLC1969284471 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1969284471</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220224042613.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevLett.114.118101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1969284471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1969284471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1303-8fbb6ae8270a49108bc6d9d16d8ddbe7b4a59272cc50eb53ee06c54e4e26dd7f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0009201020150000114001100000perceptronswithhebbianlearningbasedonwaveensembles</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liew, T C H</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics and Photonics - methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Espinosa-Ortega, T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review letters</subfield><subfield code="d">Ridge, NY : American Physical Society, 1958</subfield><subfield code="g">114(2015), 11</subfield><subfield code="w">(DE-627)129503959</subfield><subfield code="w">(DE-600)208853-8</subfield><subfield code="w">(DE-576)014907267</subfield><subfield code="x">0031-9007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:11</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1103/PhysRevLett.114.118101</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25839313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2015</subfield><subfield code="e">11</subfield></datafield></record></collection>
|
author |
Liew, T C H |
spellingShingle |
Liew, T C H ddc 550 rvk UA 1000 misc Optics and Photonics - methods Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials |
authorStr |
Liew, T C H |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129503959 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0031-9007 |
topic_title |
550 DNB UA 1000 AVZ rvk Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials Optics and Photonics - methods |
topic |
ddc 550 rvk UA 1000 misc Optics and Photonics - methods |
topic_unstemmed |
ddc 550 rvk UA 1000 misc Optics and Photonics - methods |
topic_browse |
ddc 550 rvk UA 1000 misc Optics and Photonics - methods |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t e o teo |
hierarchy_parent_title |
Physical review letters |
hierarchy_parent_id |
129503959 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Physical review letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129503959 (DE-600)208853-8 (DE-576)014907267 |
title |
Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials |
ctrlnum |
(DE-627)OLC1969284471 (DE-599)GBVOLC1969284471 (PRQ)c1303-8fbb6ae8270a49108bc6d9d16d8ddbe7b4a59272cc50eb53ee06c54e4e26dd7f0 (KEY)0009201020150000114001100000perceptronswithhebbianlearningbasedonwaveensembles |
title_full |
Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials |
author_sort |
Liew, T C H |
journal |
Physical review letters |
journalStr |
Physical review letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Liew, T C H |
container_volume |
114 |
class |
550 DNB UA 1000 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Liew, T C H |
doi_str_mv |
10.1103/PhysRevLett.114.118101 |
dewey-full |
550 |
title_sort |
perceptrons with hebbian learning based on wave ensembles in spatially patterned potentials |
title_auth |
Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials |
abstract |
A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions. |
abstractGer |
A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions. |
abstract_unstemmed |
A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_22 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2016 GBV_ILN_2095 GBV_ILN_2192 GBV_ILN_2279 GBV_ILN_2286 |
container_issue |
11 |
title_short |
Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials |
url |
http://dx.doi.org/10.1103/PhysRevLett.114.118101 http://www.ncbi.nlm.nih.gov/pubmed/25839313 |
remote_bool |
false |
author2 |
Espinosa-Ortega, T |
author2Str |
Espinosa-Ortega, T |
ppnlink |
129503959 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1103/PhysRevLett.114.118101 |
up_date |
2024-07-04T05:07:34.680Z |
_version_ |
1803623758214201345 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1969284471</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220224042613.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1103/PhysRevLett.114.118101</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1969284471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1969284471</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1303-8fbb6ae8270a49108bc6d9d16d8ddbe7b4a59272cc50eb53ee06c54e4e26dd7f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0009201020150000114001100000perceptronswithhebbianlearningbasedonwaveensembles</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 1000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liew, T C H</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perceptrons with Hebbian learning based on wave ensembles in spatially patterned potentials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A general scheme to realize a perceptron for hardware neural networks is presented, where multiple interconnections are achieved by a superposition of Schrödinger waves. Spatially patterned potentials process information by coupling different points of reciprocal space. The necessary potential shape is obtained from the Hebbian learning rule, either through exact calculation or construction from a superposition of known optical inputs. This allows implementation in a wide range of compact optical systems, including (1) any nonlinear optical system, (2) optical systems patterned by optical lithography, and (3) exciton-polariton systems with phonon or nuclear spin interactions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics and Photonics - methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Espinosa-Ortega, T</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physical review letters</subfield><subfield code="d">Ridge, NY : American Physical Society, 1958</subfield><subfield code="g">114(2015), 11</subfield><subfield code="w">(DE-627)129503959</subfield><subfield code="w">(DE-600)208853-8</subfield><subfield code="w">(DE-576)014907267</subfield><subfield code="x">0031-9007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:114</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:11</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1103/PhysRevLett.114.118101</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25839313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 1000</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">114</subfield><subfield code="j">2015</subfield><subfield code="e">11</subfield></datafield></record></collection>
|
score |
7.401886 |