Endosymbiotic origin and differential loss of eukaryotic genes
Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes...
Ausführliche Beschreibung
Autor*in: |
Mayo Roettger [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
Gene Transfer, Horizontal - genetics |
---|
Übergeordnetes Werk: |
Enthalten in: Nature - London : Macmillan Publishers Limited, part of Springer Nature, 1869, 524(2015), 7566, Seite 427-432 |
---|---|
Übergeordnetes Werk: |
volume:524 ; year:2015 ; number:7566 ; pages:427-432 |
Links: |
---|
DOI / URN: |
10.1038/nature14963 |
---|
Katalog-ID: |
OLC196966374X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC196966374X | ||
003 | DE-627 | ||
005 | 20230714174643.0 | ||
007 | tu | ||
008 | 160211s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1038/nature14963 |2 doi | |
028 | 5 | 2 | |a PQ20160211 |
035 | |a (DE-627)OLC196966374X | ||
035 | |a (DE-599)GBVOLC196966374X | ||
035 | |a (PRQ)c2229-1e063f0cded98d9066db749df5880275e647ed36dabb2862081b1d787952e1100 | ||
035 | |a (KEY)0072945020150000524756600427endosymbioticoriginanddifferentiallossofeukaryotic | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 500 |q DNB |
082 | 0 | 4 | |a 500 |q AVZ |
084 | |a BIODIV |2 fid | ||
100 | 0 | |a Mayo Roettger |e verfasserin |4 aut | |
245 | 1 | 0 | |a Endosymbiotic origin and differential loss of eukaryotic genes |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes. | ||
650 | 4 | |a Eukaryotes | |
650 | 4 | |a Genes | |
650 | 4 | |a Evolution | |
650 | 4 | |a Phylogenetics | |
650 | 4 | |a Eukaryota - classification | |
650 | 4 | |a Archaea - genetics | |
650 | 4 | |a Gene Transfer, Horizontal - genetics | |
650 | 4 | |a Organelles - genetics | |
650 | 4 | |a Genome - genetics | |
650 | 4 | |a Prokaryotic Cells - metabolism | |
650 | 4 | |a Eukaryotic Cells - metabolism | |
650 | 4 | |a Mitochondria - genetics | |
650 | 4 | |a Symbiosis - genetics | |
650 | 4 | |a Plastids - genetics | |
650 | 4 | |a Bacteria - genetics | |
650 | 4 | |a Eukaryota - genetics | |
650 | 4 | |a Proteome - genetics | |
650 | 4 | |a Genetic research | |
650 | 4 | |a Research | |
650 | 4 | |a Genetic transformation | |
650 | 4 | |a Genetic aspects | |
700 | 0 | |a Einat Hazkani-Covo |4 oth | |
700 | 0 | |a Giddy Landan |4 oth | |
700 | 0 | |a Shijulal Nelson-Sathi |4 oth | |
700 | 0 | |a Chuan Ku |4 oth | |
700 | 0 | |a David Bryant |4 oth | |
700 | 0 | |a William F Martin |4 oth | |
700 | 0 | |a Filipa L Sousa |4 oth | |
700 | 0 | |a Peter J Lockhart |4 oth | |
700 | 0 | |a James O Mcinerney |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Nature |d London : Macmillan Publishers Limited, part of Springer Nature, 1869 |g 524(2015), 7566, Seite 427-432 |w (DE-627)129292834 |w (DE-600)120714-3 |w (DE-576)014473941 |x 0028-0836 |7 nnns |
773 | 1 | 8 | |g volume:524 |g year:2015 |g number:7566 |g pages:427-432 |
856 | 4 | 1 | |u http://dx.doi.org/10.1038/nature14963 |3 Volltext |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/26287458 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1708884522 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-SPO | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_160 | ||
912 | |a GBV_ILN_168 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_211 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_290 | ||
912 | |a GBV_ILN_294 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_754 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2095 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2120 | ||
912 | |a GBV_ILN_2121 | ||
912 | |a GBV_ILN_2173 | ||
912 | |a GBV_ILN_2219 | ||
912 | |a GBV_ILN_2221 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_2286 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4219 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4302 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4317 | ||
912 | |a GBV_ILN_4320 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 524 |j 2015 |e 7566 |h 427-432 |
author_variant |
m r mr |
---|---|
matchkey_str |
article:00280836:2015----::noyboioiiadifrnilos |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1038/nature14963 doi PQ20160211 (DE-627)OLC196966374X (DE-599)GBVOLC196966374X (PRQ)c2229-1e063f0cded98d9066db749df5880275e647ed36dabb2862081b1d787952e1100 (KEY)0072945020150000524756600427endosymbioticoriginanddifferentiallossofeukaryotic DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Mayo Roettger verfasserin aut Endosymbiotic origin and differential loss of eukaryotic genes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes. Eukaryotes Genes Evolution Phylogenetics Eukaryota - classification Archaea - genetics Gene Transfer, Horizontal - genetics Organelles - genetics Genome - genetics Prokaryotic Cells - metabolism Eukaryotic Cells - metabolism Mitochondria - genetics Symbiosis - genetics Plastids - genetics Bacteria - genetics Eukaryota - genetics Proteome - genetics Genetic research Research Genetic transformation Genetic aspects Einat Hazkani-Covo oth Giddy Landan oth Shijulal Nelson-Sathi oth Chuan Ku oth David Bryant oth William F Martin oth Filipa L Sousa oth Peter J Lockhart oth James O Mcinerney oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 524(2015), 7566, Seite 427-432 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:524 year:2015 number:7566 pages:427-432 http://dx.doi.org/10.1038/nature14963 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26287458 http://search.proquest.com/docview/1708884522 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 524 2015 7566 427-432 |
spelling |
10.1038/nature14963 doi PQ20160211 (DE-627)OLC196966374X (DE-599)GBVOLC196966374X (PRQ)c2229-1e063f0cded98d9066db749df5880275e647ed36dabb2862081b1d787952e1100 (KEY)0072945020150000524756600427endosymbioticoriginanddifferentiallossofeukaryotic DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Mayo Roettger verfasserin aut Endosymbiotic origin and differential loss of eukaryotic genes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes. Eukaryotes Genes Evolution Phylogenetics Eukaryota - classification Archaea - genetics Gene Transfer, Horizontal - genetics Organelles - genetics Genome - genetics Prokaryotic Cells - metabolism Eukaryotic Cells - metabolism Mitochondria - genetics Symbiosis - genetics Plastids - genetics Bacteria - genetics Eukaryota - genetics Proteome - genetics Genetic research Research Genetic transformation Genetic aspects Einat Hazkani-Covo oth Giddy Landan oth Shijulal Nelson-Sathi oth Chuan Ku oth David Bryant oth William F Martin oth Filipa L Sousa oth Peter J Lockhart oth James O Mcinerney oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 524(2015), 7566, Seite 427-432 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:524 year:2015 number:7566 pages:427-432 http://dx.doi.org/10.1038/nature14963 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26287458 http://search.proquest.com/docview/1708884522 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 524 2015 7566 427-432 |
allfields_unstemmed |
10.1038/nature14963 doi PQ20160211 (DE-627)OLC196966374X (DE-599)GBVOLC196966374X (PRQ)c2229-1e063f0cded98d9066db749df5880275e647ed36dabb2862081b1d787952e1100 (KEY)0072945020150000524756600427endosymbioticoriginanddifferentiallossofeukaryotic DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Mayo Roettger verfasserin aut Endosymbiotic origin and differential loss of eukaryotic genes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes. Eukaryotes Genes Evolution Phylogenetics Eukaryota - classification Archaea - genetics Gene Transfer, Horizontal - genetics Organelles - genetics Genome - genetics Prokaryotic Cells - metabolism Eukaryotic Cells - metabolism Mitochondria - genetics Symbiosis - genetics Plastids - genetics Bacteria - genetics Eukaryota - genetics Proteome - genetics Genetic research Research Genetic transformation Genetic aspects Einat Hazkani-Covo oth Giddy Landan oth Shijulal Nelson-Sathi oth Chuan Ku oth David Bryant oth William F Martin oth Filipa L Sousa oth Peter J Lockhart oth James O Mcinerney oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 524(2015), 7566, Seite 427-432 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:524 year:2015 number:7566 pages:427-432 http://dx.doi.org/10.1038/nature14963 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26287458 http://search.proquest.com/docview/1708884522 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 524 2015 7566 427-432 |
allfieldsGer |
10.1038/nature14963 doi PQ20160211 (DE-627)OLC196966374X (DE-599)GBVOLC196966374X (PRQ)c2229-1e063f0cded98d9066db749df5880275e647ed36dabb2862081b1d787952e1100 (KEY)0072945020150000524756600427endosymbioticoriginanddifferentiallossofeukaryotic DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Mayo Roettger verfasserin aut Endosymbiotic origin and differential loss of eukaryotic genes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes. Eukaryotes Genes Evolution Phylogenetics Eukaryota - classification Archaea - genetics Gene Transfer, Horizontal - genetics Organelles - genetics Genome - genetics Prokaryotic Cells - metabolism Eukaryotic Cells - metabolism Mitochondria - genetics Symbiosis - genetics Plastids - genetics Bacteria - genetics Eukaryota - genetics Proteome - genetics Genetic research Research Genetic transformation Genetic aspects Einat Hazkani-Covo oth Giddy Landan oth Shijulal Nelson-Sathi oth Chuan Ku oth David Bryant oth William F Martin oth Filipa L Sousa oth Peter J Lockhart oth James O Mcinerney oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 524(2015), 7566, Seite 427-432 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:524 year:2015 number:7566 pages:427-432 http://dx.doi.org/10.1038/nature14963 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26287458 http://search.proquest.com/docview/1708884522 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 524 2015 7566 427-432 |
allfieldsSound |
10.1038/nature14963 doi PQ20160211 (DE-627)OLC196966374X (DE-599)GBVOLC196966374X (PRQ)c2229-1e063f0cded98d9066db749df5880275e647ed36dabb2862081b1d787952e1100 (KEY)0072945020150000524756600427endosymbioticoriginanddifferentiallossofeukaryotic DE-627 ger DE-627 rakwb eng 070 500 DNB 500 AVZ BIODIV fid Mayo Roettger verfasserin aut Endosymbiotic origin and differential loss of eukaryotic genes 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes. Eukaryotes Genes Evolution Phylogenetics Eukaryota - classification Archaea - genetics Gene Transfer, Horizontal - genetics Organelles - genetics Genome - genetics Prokaryotic Cells - metabolism Eukaryotic Cells - metabolism Mitochondria - genetics Symbiosis - genetics Plastids - genetics Bacteria - genetics Eukaryota - genetics Proteome - genetics Genetic research Research Genetic transformation Genetic aspects Einat Hazkani-Covo oth Giddy Landan oth Shijulal Nelson-Sathi oth Chuan Ku oth David Bryant oth William F Martin oth Filipa L Sousa oth Peter J Lockhart oth James O Mcinerney oth Enthalten in Nature London : Macmillan Publishers Limited, part of Springer Nature, 1869 524(2015), 7566, Seite 427-432 (DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 0028-0836 nnns volume:524 year:2015 number:7566 pages:427-432 http://dx.doi.org/10.1038/nature14963 Volltext http://www.ncbi.nlm.nih.gov/pubmed/26287458 http://search.proquest.com/docview/1708884522 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 AR 524 2015 7566 427-432 |
language |
English |
source |
Enthalten in Nature 524(2015), 7566, Seite 427-432 volume:524 year:2015 number:7566 pages:427-432 |
sourceStr |
Enthalten in Nature 524(2015), 7566, Seite 427-432 volume:524 year:2015 number:7566 pages:427-432 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Eukaryotes Genes Evolution Phylogenetics Eukaryota - classification Archaea - genetics Gene Transfer, Horizontal - genetics Organelles - genetics Genome - genetics Prokaryotic Cells - metabolism Eukaryotic Cells - metabolism Mitochondria - genetics Symbiosis - genetics Plastids - genetics Bacteria - genetics Eukaryota - genetics Proteome - genetics Genetic research Research Genetic transformation Genetic aspects |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Nature |
authorswithroles_txt_mv |
Mayo Roettger @@aut@@ Einat Hazkani-Covo @@oth@@ Giddy Landan @@oth@@ Shijulal Nelson-Sathi @@oth@@ Chuan Ku @@oth@@ David Bryant @@oth@@ William F Martin @@oth@@ Filipa L Sousa @@oth@@ Peter J Lockhart @@oth@@ James O Mcinerney @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129292834 |
dewey-sort |
270 |
id |
OLC196966374X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC196966374X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714174643.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nature14963</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC196966374X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC196966374X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2229-1e063f0cded98d9066db749df5880275e647ed36dabb2862081b1d787952e1100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072945020150000524756600427endosymbioticoriginanddifferentiallossofeukaryotic</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mayo Roettger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Endosymbiotic origin and differential loss of eukaryotic genes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phylogenetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Archaea - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene Transfer, Horizontal - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organelles - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genome - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prokaryotic Cells - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotic Cells - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mitochondria - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbiosis - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plastids - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteome - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic aspects</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Einat Hazkani-Covo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giddy Landan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shijulal Nelson-Sathi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chuan Ku</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Bryant</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">William F Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Filipa L Sousa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter J Lockhart</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">James O Mcinerney</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature</subfield><subfield code="d">London : Macmillan Publishers Limited, part of Springer Nature, 1869</subfield><subfield code="g">524(2015), 7566, Seite 427-432</subfield><subfield code="w">(DE-627)129292834</subfield><subfield code="w">(DE-600)120714-3</subfield><subfield code="w">(DE-576)014473941</subfield><subfield code="x">0028-0836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:524</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7566</subfield><subfield code="g">pages:427-432</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nature14963</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26287458</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1708884522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-SPO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_294</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2173</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">524</subfield><subfield code="j">2015</subfield><subfield code="e">7566</subfield><subfield code="h">427-432</subfield></datafield></record></collection>
|
author |
Mayo Roettger |
spellingShingle |
Mayo Roettger ddc 070 ddc 500 fid BIODIV misc Eukaryotes misc Genes misc Evolution misc Phylogenetics misc Eukaryota - classification misc Archaea - genetics misc Gene Transfer, Horizontal - genetics misc Organelles - genetics misc Genome - genetics misc Prokaryotic Cells - metabolism misc Eukaryotic Cells - metabolism misc Mitochondria - genetics misc Symbiosis - genetics misc Plastids - genetics misc Bacteria - genetics misc Eukaryota - genetics misc Proteome - genetics misc Genetic research misc Research misc Genetic transformation misc Genetic aspects Endosymbiotic origin and differential loss of eukaryotic genes |
authorStr |
Mayo Roettger |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129292834 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0028-0836 |
topic_title |
070 500 DNB 500 AVZ BIODIV fid Endosymbiotic origin and differential loss of eukaryotic genes Eukaryotes Genes Evolution Phylogenetics Eukaryota - classification Archaea - genetics Gene Transfer, Horizontal - genetics Organelles - genetics Genome - genetics Prokaryotic Cells - metabolism Eukaryotic Cells - metabolism Mitochondria - genetics Symbiosis - genetics Plastids - genetics Bacteria - genetics Eukaryota - genetics Proteome - genetics Genetic research Research Genetic transformation Genetic aspects |
topic |
ddc 070 ddc 500 fid BIODIV misc Eukaryotes misc Genes misc Evolution misc Phylogenetics misc Eukaryota - classification misc Archaea - genetics misc Gene Transfer, Horizontal - genetics misc Organelles - genetics misc Genome - genetics misc Prokaryotic Cells - metabolism misc Eukaryotic Cells - metabolism misc Mitochondria - genetics misc Symbiosis - genetics misc Plastids - genetics misc Bacteria - genetics misc Eukaryota - genetics misc Proteome - genetics misc Genetic research misc Research misc Genetic transformation misc Genetic aspects |
topic_unstemmed |
ddc 070 ddc 500 fid BIODIV misc Eukaryotes misc Genes misc Evolution misc Phylogenetics misc Eukaryota - classification misc Archaea - genetics misc Gene Transfer, Horizontal - genetics misc Organelles - genetics misc Genome - genetics misc Prokaryotic Cells - metabolism misc Eukaryotic Cells - metabolism misc Mitochondria - genetics misc Symbiosis - genetics misc Plastids - genetics misc Bacteria - genetics misc Eukaryota - genetics misc Proteome - genetics misc Genetic research misc Research misc Genetic transformation misc Genetic aspects |
topic_browse |
ddc 070 ddc 500 fid BIODIV misc Eukaryotes misc Genes misc Evolution misc Phylogenetics misc Eukaryota - classification misc Archaea - genetics misc Gene Transfer, Horizontal - genetics misc Organelles - genetics misc Genome - genetics misc Prokaryotic Cells - metabolism misc Eukaryotic Cells - metabolism misc Mitochondria - genetics misc Symbiosis - genetics misc Plastids - genetics misc Bacteria - genetics misc Eukaryota - genetics misc Proteome - genetics misc Genetic research misc Research misc Genetic transformation misc Genetic aspects |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
e h c ehc g l gl s n s sns c k ck d b db w f m wfm f l s fls p j l pjl j o m jom |
hierarchy_parent_title |
Nature |
hierarchy_parent_id |
129292834 |
dewey-tens |
070 - News media, journalism & publishing 500 - Science |
hierarchy_top_title |
Nature |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129292834 (DE-600)120714-3 (DE-576)014473941 |
title |
Endosymbiotic origin and differential loss of eukaryotic genes |
ctrlnum |
(DE-627)OLC196966374X (DE-599)GBVOLC196966374X (PRQ)c2229-1e063f0cded98d9066db749df5880275e647ed36dabb2862081b1d787952e1100 (KEY)0072945020150000524756600427endosymbioticoriginanddifferentiallossofeukaryotic |
title_full |
Endosymbiotic origin and differential loss of eukaryotic genes |
author_sort |
Mayo Roettger |
journal |
Nature |
journalStr |
Nature |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
427 |
author_browse |
Mayo Roettger |
container_volume |
524 |
class |
070 500 DNB 500 AVZ BIODIV fid |
format_se |
Aufsätze |
author-letter |
Mayo Roettger |
doi_str_mv |
10.1038/nature14963 |
dewey-full |
070 500 |
title_sort |
endosymbiotic origin and differential loss of eukaryotic genes |
title_auth |
Endosymbiotic origin and differential loss of eukaryotic genes |
abstract |
Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes. |
abstractGer |
Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes. |
abstract_unstemmed |
Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-SPO SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-FOR GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_40 GBV_ILN_47 GBV_ILN_55 GBV_ILN_59 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_154 GBV_ILN_160 GBV_ILN_168 GBV_ILN_170 GBV_ILN_171 GBV_ILN_211 GBV_ILN_267 GBV_ILN_290 GBV_ILN_294 GBV_ILN_601 GBV_ILN_647 GBV_ILN_754 GBV_ILN_2001 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2015 GBV_ILN_2016 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2026 GBV_ILN_2095 GBV_ILN_2116 GBV_ILN_2120 GBV_ILN_2121 GBV_ILN_2173 GBV_ILN_2219 GBV_ILN_2221 GBV_ILN_2279 GBV_ILN_2286 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4046 GBV_ILN_4125 GBV_ILN_4219 GBV_ILN_4251 GBV_ILN_4277 GBV_ILN_4302 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4313 GBV_ILN_4314 GBV_ILN_4317 GBV_ILN_4320 GBV_ILN_4324 GBV_ILN_4700 |
container_issue |
7566 |
title_short |
Endosymbiotic origin and differential loss of eukaryotic genes |
url |
http://dx.doi.org/10.1038/nature14963 http://www.ncbi.nlm.nih.gov/pubmed/26287458 http://search.proquest.com/docview/1708884522 |
remote_bool |
false |
author2 |
Einat Hazkani-Covo Giddy Landan Shijulal Nelson-Sathi Chuan Ku David Bryant William F Martin Filipa L Sousa Peter J Lockhart James O Mcinerney |
author2Str |
Einat Hazkani-Covo Giddy Landan Shijulal Nelson-Sathi Chuan Ku David Bryant William F Martin Filipa L Sousa Peter J Lockhart James O Mcinerney |
ppnlink |
129292834 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1038/nature14963 |
up_date |
2024-07-04T06:02:45.468Z |
_version_ |
1803627229840670720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC196966374X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714174643.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nature14963</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC196966374X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC196966374X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2229-1e063f0cded98d9066db749df5880275e647ed36dabb2862081b1d787952e1100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0072945020150000524756600427endosymbioticoriginanddifferentiallossofeukaryotic</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Mayo Roettger</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Endosymbiotic origin and differential loss of eukaryotic genes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Chloroplasts arose from cyanobacteria, mitochondria arose from proteobacteria. Both organelles have conserved their prokaryotic biochemistry, but their genomes are reduced, and most organelle proteins are encoded in the nucleus. Endosymbiotic theory posits that bacterial genes in eukaryotic genomes entered the eukaryotic lineage via organelle ancestors. It predicts episodic influx of prokaryotic genes into the eukaryotic lineage, with acquisition corresponding to endosymbiotic events. Eukaryotic genome sequences, however, increasingly implicate lateral gene transfer, both from prokaryotes to eukaryotes and among eukaryotes, as a source of gene content variation in eukaryotic genomes, which predicts continuous, lineage-specific acquisition of prokaryotic genes in divergent eukaryotic groups. Here we discriminate between these two alternatives by clustering and phylogenetic analysis of eukaryotic gene families having prokaryotic homologues. Our results indicate (1) that gene transfer from bacteria to eukaryotes is episodic, as revealed by gene distributions, and coincides with major evolutionary transitions at the origin of chloroplasts and mitochondria; (2) that gene inheritance in eukaryotes is vertical, as revealed by extensive topological comparison, sparse gene distributions stemming from differential loss; and (3) that continuous, lineage-specific lateral gene transfer, although it sometimes occurs, does not contribute to long-term gene content evolution in eukaryotic genomes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phylogenetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Archaea - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene Transfer, Horizontal - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organelles - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genome - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prokaryotic Cells - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotic Cells - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mitochondria - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbiosis - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plastids - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryota - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteome - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic transformation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genetic aspects</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Einat Hazkani-Covo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Giddy Landan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shijulal Nelson-Sathi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chuan Ku</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">David Bryant</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">William F Martin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Filipa L Sousa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Peter J Lockhart</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">James O Mcinerney</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature</subfield><subfield code="d">London : Macmillan Publishers Limited, part of Springer Nature, 1869</subfield><subfield code="g">524(2015), 7566, Seite 427-432</subfield><subfield code="w">(DE-627)129292834</subfield><subfield code="w">(DE-600)120714-3</subfield><subfield code="w">(DE-576)014473941</subfield><subfield code="x">0028-0836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:524</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:7566</subfield><subfield code="g">pages:427-432</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nature14963</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26287458</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1708884522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-SPO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_211</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_290</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_294</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2095</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2173</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2221</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2286</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4302</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4317</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4320</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">524</subfield><subfield code="j">2015</subfield><subfield code="e">7566</subfield><subfield code="h">427-432</subfield></datafield></record></collection>
|
score |
7.402273 |