New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation
Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manne...
Ausführliche Beschreibung
Autor*in: |
Brigitte Schemmerling [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences |
---|
Schlagwörter: |
DNA, Complementary - metabolism Recombinant Proteins - metabolism Alkyl and Aryl Transferases - metabolism |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the National Academy of Sciences of the United States of America - Washington, DC : NAS, 1877, 112(2015), 13, Seite 4164-4169 |
---|---|
Übergeordnetes Werk: |
volume:112 ; year:2015 ; number:13 ; pages:4164-4169 |
Links: |
Volltext |
---|
DOI / URN: |
10.1073/pnas.1423457112 |
---|
Katalog-ID: |
OLC1970260076 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1970260076 | ||
003 | DE-627 | ||
005 | 20230714175849.0 | ||
007 | tu | ||
008 | 160211s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1073/pnas.1423457112 |2 doi | |
028 | 5 | 2 | |a PQ20160211 |
035 | |a (DE-627)OLC1970260076 | ||
035 | |a (DE-599)GBVOLC1970260076 | ||
035 | |a (PRQ)g2415-d91b8c2a935613d20fd8caf2de02c5fa0f026a631b3ca19ccdcd4431cb4691093 | ||
035 | |a (KEY)0583363920150000112001304164newaspectofplantrhizobiainteractionalkaloidbiosynt | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q DNB |
082 | 0 | 4 | |a 570 |q AVZ |
084 | |a LING |2 fid | ||
084 | |a BIODIV |2 fid | ||
100 | 0 | |a Brigitte Schemmerling |e verfasserin |4 aut | |
245 | 1 | 0 | |a New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense. | ||
540 | |a Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences | ||
650 | 4 | |a Crotalaria - microbiology | |
650 | 4 | |a DNA, Complementary - metabolism | |
650 | 4 | |a Recombinant Proteins - metabolism | |
650 | 4 | |a Crotalaria - metabolism | |
650 | 4 | |a Rhizobium - physiology | |
650 | 4 | |a Plant Roots - metabolism | |
650 | 4 | |a Nitrogen - chemistry | |
650 | 4 | |a Alkyl and Aryl Transferases - metabolism | |
650 | 4 | |a Pyrrolizidine Alkaloids - metabolism | |
650 | 4 | |a Flowers & plants | |
650 | 4 | |a Enzymes | |
650 | 4 | |a Bacteria | |
650 | 4 | |a Biosynthesis | |
650 | 4 | |a Symbiosis | |
650 | 4 | |a pyrrolizidine alkaloids | |
650 | 4 | |a root-nodule symbiosis | |
650 | 4 | |a chemical defense | |
650 | 4 | |a plant secondary metabolism | |
650 | 4 | |a Biological Sciences | |
650 | 4 | |a alkaloid biosynthesis | |
700 | 0 | |a Dorothee Langel |4 oth | |
700 | 0 | |a Elisabeth Kaltenegger |4 oth | |
700 | 0 | |a Dietrich Ober |4 oth | |
700 | 0 | |a Franziska Heidemann |4 oth | |
700 | 0 | |a Simon Irmer |4 oth | |
700 | 0 | |a Nora Podzun |4 oth | |
700 | 0 | |a Christian Zörb |4 oth | |
700 | 0 | |a Christoph-Martin Geilfus |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Proceedings of the National Academy of Sciences of the United States of America |d Washington, DC : NAS, 1877 |g 112(2015), 13, Seite 4164-4169 |w (DE-627)129505269 |w (DE-600)209104-5 |w (DE-576)014909189 |x 0027-8424 |7 nnns |
773 | 1 | 8 | |g volume:112 |g year:2015 |g number:13 |g pages:4164-4169 |
856 | 4 | 1 | |u http://dx.doi.org/10.1073/pnas.1423457112 |3 Volltext |
856 | 4 | 2 | |u http://www.pnas.org/content/112/13/4164.abstract |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25775562 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1672168950 |
856 | 4 | 2 | |u http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4386363&tool=pmcentrez&rendertype=abstract |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-LING | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
951 | |a AR | ||
952 | |d 112 |j 2015 |e 13 |h 4164-4169 |
author_variant |
b s bs |
---|---|
matchkey_str |
article:00278424:2015----::eapcopathzbaneatoakliboyteiicoa |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1073/pnas.1423457112 doi PQ20160211 (DE-627)OLC1970260076 (DE-599)GBVOLC1970260076 (PRQ)g2415-d91b8c2a935613d20fd8caf2de02c5fa0f026a631b3ca19ccdcd4431cb4691093 (KEY)0583363920150000112001304164newaspectofplantrhizobiainteractionalkaloidbiosynt DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Brigitte Schemmerling verfasserin aut New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Crotalaria - microbiology DNA, Complementary - metabolism Recombinant Proteins - metabolism Crotalaria - metabolism Rhizobium - physiology Plant Roots - metabolism Nitrogen - chemistry Alkyl and Aryl Transferases - metabolism Pyrrolizidine Alkaloids - metabolism Flowers & plants Enzymes Bacteria Biosynthesis Symbiosis pyrrolizidine alkaloids root-nodule symbiosis chemical defense plant secondary metabolism Biological Sciences alkaloid biosynthesis Dorothee Langel oth Elisabeth Kaltenegger oth Dietrich Ober oth Franziska Heidemann oth Simon Irmer oth Nora Podzun oth Christian Zörb oth Christoph-Martin Geilfus oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 13, Seite 4164-4169 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:13 pages:4164-4169 http://dx.doi.org/10.1073/pnas.1423457112 Volltext http://www.pnas.org/content/112/13/4164.abstract http://www.ncbi.nlm.nih.gov/pubmed/25775562 http://search.proquest.com/docview/1672168950 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4386363&tool=pmcentrez&rendertype=abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 13 4164-4169 |
spelling |
10.1073/pnas.1423457112 doi PQ20160211 (DE-627)OLC1970260076 (DE-599)GBVOLC1970260076 (PRQ)g2415-d91b8c2a935613d20fd8caf2de02c5fa0f026a631b3ca19ccdcd4431cb4691093 (KEY)0583363920150000112001304164newaspectofplantrhizobiainteractionalkaloidbiosynt DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Brigitte Schemmerling verfasserin aut New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Crotalaria - microbiology DNA, Complementary - metabolism Recombinant Proteins - metabolism Crotalaria - metabolism Rhizobium - physiology Plant Roots - metabolism Nitrogen - chemistry Alkyl and Aryl Transferases - metabolism Pyrrolizidine Alkaloids - metabolism Flowers & plants Enzymes Bacteria Biosynthesis Symbiosis pyrrolizidine alkaloids root-nodule symbiosis chemical defense plant secondary metabolism Biological Sciences alkaloid biosynthesis Dorothee Langel oth Elisabeth Kaltenegger oth Dietrich Ober oth Franziska Heidemann oth Simon Irmer oth Nora Podzun oth Christian Zörb oth Christoph-Martin Geilfus oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 13, Seite 4164-4169 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:13 pages:4164-4169 http://dx.doi.org/10.1073/pnas.1423457112 Volltext http://www.pnas.org/content/112/13/4164.abstract http://www.ncbi.nlm.nih.gov/pubmed/25775562 http://search.proquest.com/docview/1672168950 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4386363&tool=pmcentrez&rendertype=abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 13 4164-4169 |
allfields_unstemmed |
10.1073/pnas.1423457112 doi PQ20160211 (DE-627)OLC1970260076 (DE-599)GBVOLC1970260076 (PRQ)g2415-d91b8c2a935613d20fd8caf2de02c5fa0f026a631b3ca19ccdcd4431cb4691093 (KEY)0583363920150000112001304164newaspectofplantrhizobiainteractionalkaloidbiosynt DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Brigitte Schemmerling verfasserin aut New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Crotalaria - microbiology DNA, Complementary - metabolism Recombinant Proteins - metabolism Crotalaria - metabolism Rhizobium - physiology Plant Roots - metabolism Nitrogen - chemistry Alkyl and Aryl Transferases - metabolism Pyrrolizidine Alkaloids - metabolism Flowers & plants Enzymes Bacteria Biosynthesis Symbiosis pyrrolizidine alkaloids root-nodule symbiosis chemical defense plant secondary metabolism Biological Sciences alkaloid biosynthesis Dorothee Langel oth Elisabeth Kaltenegger oth Dietrich Ober oth Franziska Heidemann oth Simon Irmer oth Nora Podzun oth Christian Zörb oth Christoph-Martin Geilfus oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 13, Seite 4164-4169 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:13 pages:4164-4169 http://dx.doi.org/10.1073/pnas.1423457112 Volltext http://www.pnas.org/content/112/13/4164.abstract http://www.ncbi.nlm.nih.gov/pubmed/25775562 http://search.proquest.com/docview/1672168950 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4386363&tool=pmcentrez&rendertype=abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 13 4164-4169 |
allfieldsGer |
10.1073/pnas.1423457112 doi PQ20160211 (DE-627)OLC1970260076 (DE-599)GBVOLC1970260076 (PRQ)g2415-d91b8c2a935613d20fd8caf2de02c5fa0f026a631b3ca19ccdcd4431cb4691093 (KEY)0583363920150000112001304164newaspectofplantrhizobiainteractionalkaloidbiosynt DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Brigitte Schemmerling verfasserin aut New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Crotalaria - microbiology DNA, Complementary - metabolism Recombinant Proteins - metabolism Crotalaria - metabolism Rhizobium - physiology Plant Roots - metabolism Nitrogen - chemistry Alkyl and Aryl Transferases - metabolism Pyrrolizidine Alkaloids - metabolism Flowers & plants Enzymes Bacteria Biosynthesis Symbiosis pyrrolizidine alkaloids root-nodule symbiosis chemical defense plant secondary metabolism Biological Sciences alkaloid biosynthesis Dorothee Langel oth Elisabeth Kaltenegger oth Dietrich Ober oth Franziska Heidemann oth Simon Irmer oth Nora Podzun oth Christian Zörb oth Christoph-Martin Geilfus oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 13, Seite 4164-4169 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:13 pages:4164-4169 http://dx.doi.org/10.1073/pnas.1423457112 Volltext http://www.pnas.org/content/112/13/4164.abstract http://www.ncbi.nlm.nih.gov/pubmed/25775562 http://search.proquest.com/docview/1672168950 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4386363&tool=pmcentrez&rendertype=abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 13 4164-4169 |
allfieldsSound |
10.1073/pnas.1423457112 doi PQ20160211 (DE-627)OLC1970260076 (DE-599)GBVOLC1970260076 (PRQ)g2415-d91b8c2a935613d20fd8caf2de02c5fa0f026a631b3ca19ccdcd4431cb4691093 (KEY)0583363920150000112001304164newaspectofplantrhizobiainteractionalkaloidbiosynt DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Brigitte Schemmerling verfasserin aut New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Crotalaria - microbiology DNA, Complementary - metabolism Recombinant Proteins - metabolism Crotalaria - metabolism Rhizobium - physiology Plant Roots - metabolism Nitrogen - chemistry Alkyl and Aryl Transferases - metabolism Pyrrolizidine Alkaloids - metabolism Flowers & plants Enzymes Bacteria Biosynthesis Symbiosis pyrrolizidine alkaloids root-nodule symbiosis chemical defense plant secondary metabolism Biological Sciences alkaloid biosynthesis Dorothee Langel oth Elisabeth Kaltenegger oth Dietrich Ober oth Franziska Heidemann oth Simon Irmer oth Nora Podzun oth Christian Zörb oth Christoph-Martin Geilfus oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 13, Seite 4164-4169 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:13 pages:4164-4169 http://dx.doi.org/10.1073/pnas.1423457112 Volltext http://www.pnas.org/content/112/13/4164.abstract http://www.ncbi.nlm.nih.gov/pubmed/25775562 http://search.proquest.com/docview/1672168950 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4386363&tool=pmcentrez&rendertype=abstract GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 13 4164-4169 |
language |
English |
source |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 112(2015), 13, Seite 4164-4169 volume:112 year:2015 number:13 pages:4164-4169 |
sourceStr |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 112(2015), 13, Seite 4164-4169 volume:112 year:2015 number:13 pages:4164-4169 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Crotalaria - microbiology DNA, Complementary - metabolism Recombinant Proteins - metabolism Crotalaria - metabolism Rhizobium - physiology Plant Roots - metabolism Nitrogen - chemistry Alkyl and Aryl Transferases - metabolism Pyrrolizidine Alkaloids - metabolism Flowers & plants Enzymes Bacteria Biosynthesis Symbiosis pyrrolizidine alkaloids root-nodule symbiosis chemical defense plant secondary metabolism Biological Sciences alkaloid biosynthesis |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the National Academy of Sciences of the United States of America |
authorswithroles_txt_mv |
Brigitte Schemmerling @@aut@@ Dorothee Langel @@oth@@ Elisabeth Kaltenegger @@oth@@ Dietrich Ober @@oth@@ Franziska Heidemann @@oth@@ Simon Irmer @@oth@@ Nora Podzun @@oth@@ Christian Zörb @@oth@@ Christoph-Martin Geilfus @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129505269 |
dewey-sort |
3500 |
id |
OLC1970260076 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970260076</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714175849.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1423457112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970260076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970260076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g2415-d91b8c2a935613d20fd8caf2de02c5fa0f026a631b3ca19ccdcd4431cb4691093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920150000112001304164newaspectofplantrhizobiainteractionalkaloidbiosynt</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Brigitte Schemmerling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crotalaria - microbiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA, Complementary - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recombinant Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crotalaria - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rhizobium - physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant Roots - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrogen - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkyl and Aryl Transferases - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyrrolizidine Alkaloids - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flowers & plants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enzymes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbiosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pyrrolizidine alkaloids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">root-nodule symbiosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical defense</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant secondary metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alkaloid biosynthesis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dorothee Langel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elisabeth Kaltenegger</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dietrich Ober</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Franziska Heidemann</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon Irmer</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nora Podzun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christian Zörb</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christoph-Martin Geilfus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">112(2015), 13, Seite 4164-4169</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:4164-4169</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1423457112</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pnas.org/content/112/13/4164.abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25775562</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1672168950</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4386363&tool=pmcentrez&rendertype=abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2015</subfield><subfield code="e">13</subfield><subfield code="h">4164-4169</subfield></datafield></record></collection>
|
author |
Brigitte Schemmerling |
spellingShingle |
Brigitte Schemmerling ddc 500 ddc 570 fid LING fid BIODIV misc Crotalaria - microbiology misc DNA, Complementary - metabolism misc Recombinant Proteins - metabolism misc Crotalaria - metabolism misc Rhizobium - physiology misc Plant Roots - metabolism misc Nitrogen - chemistry misc Alkyl and Aryl Transferases - metabolism misc Pyrrolizidine Alkaloids - metabolism misc Flowers & plants misc Enzymes misc Bacteria misc Biosynthesis misc Symbiosis misc pyrrolizidine alkaloids misc root-nodule symbiosis misc chemical defense misc plant secondary metabolism misc Biological Sciences misc alkaloid biosynthesis New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation |
authorStr |
Brigitte Schemmerling |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129505269 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0027-8424 |
topic_title |
500 DNB 570 AVZ LING fid BIODIV fid New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation Crotalaria - microbiology DNA, Complementary - metabolism Recombinant Proteins - metabolism Crotalaria - metabolism Rhizobium - physiology Plant Roots - metabolism Nitrogen - chemistry Alkyl and Aryl Transferases - metabolism Pyrrolizidine Alkaloids - metabolism Flowers & plants Enzymes Bacteria Biosynthesis Symbiosis pyrrolizidine alkaloids root-nodule symbiosis chemical defense plant secondary metabolism Biological Sciences alkaloid biosynthesis |
topic |
ddc 500 ddc 570 fid LING fid BIODIV misc Crotalaria - microbiology misc DNA, Complementary - metabolism misc Recombinant Proteins - metabolism misc Crotalaria - metabolism misc Rhizobium - physiology misc Plant Roots - metabolism misc Nitrogen - chemistry misc Alkyl and Aryl Transferases - metabolism misc Pyrrolizidine Alkaloids - metabolism misc Flowers & plants misc Enzymes misc Bacteria misc Biosynthesis misc Symbiosis misc pyrrolizidine alkaloids misc root-nodule symbiosis misc chemical defense misc plant secondary metabolism misc Biological Sciences misc alkaloid biosynthesis |
topic_unstemmed |
ddc 500 ddc 570 fid LING fid BIODIV misc Crotalaria - microbiology misc DNA, Complementary - metabolism misc Recombinant Proteins - metabolism misc Crotalaria - metabolism misc Rhizobium - physiology misc Plant Roots - metabolism misc Nitrogen - chemistry misc Alkyl and Aryl Transferases - metabolism misc Pyrrolizidine Alkaloids - metabolism misc Flowers & plants misc Enzymes misc Bacteria misc Biosynthesis misc Symbiosis misc pyrrolizidine alkaloids misc root-nodule symbiosis misc chemical defense misc plant secondary metabolism misc Biological Sciences misc alkaloid biosynthesis |
topic_browse |
ddc 500 ddc 570 fid LING fid BIODIV misc Crotalaria - microbiology misc DNA, Complementary - metabolism misc Recombinant Proteins - metabolism misc Crotalaria - metabolism misc Rhizobium - physiology misc Plant Roots - metabolism misc Nitrogen - chemistry misc Alkyl and Aryl Transferases - metabolism misc Pyrrolizidine Alkaloids - metabolism misc Flowers & plants misc Enzymes misc Bacteria misc Biosynthesis misc Symbiosis misc pyrrolizidine alkaloids misc root-nodule symbiosis misc chemical defense misc plant secondary metabolism misc Biological Sciences misc alkaloid biosynthesis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d l dl e k ek d o do f h fh s i si n p np c z cz c m g cmg |
hierarchy_parent_title |
Proceedings of the National Academy of Sciences of the United States of America |
hierarchy_parent_id |
129505269 |
dewey-tens |
500 - Science 570 - Life sciences; biology |
hierarchy_top_title |
Proceedings of the National Academy of Sciences of the United States of America |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 |
title |
New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation |
ctrlnum |
(DE-627)OLC1970260076 (DE-599)GBVOLC1970260076 (PRQ)g2415-d91b8c2a935613d20fd8caf2de02c5fa0f026a631b3ca19ccdcd4431cb4691093 (KEY)0583363920150000112001304164newaspectofplantrhizobiainteractionalkaloidbiosynt |
title_full |
New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation |
author_sort |
Brigitte Schemmerling |
journal |
Proceedings of the National Academy of Sciences of the United States of America |
journalStr |
Proceedings of the National Academy of Sciences of the United States of America |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
4164 |
author_browse |
Brigitte Schemmerling |
container_volume |
112 |
class |
500 DNB 570 AVZ LING fid BIODIV fid |
format_se |
Aufsätze |
author-letter |
Brigitte Schemmerling |
doi_str_mv |
10.1073/pnas.1423457112 |
dewey-full |
500 570 |
title_sort |
new aspect of plant–rhizobia interaction: alkaloid biosynthesis in crotalaria depends on nodulation |
title_auth |
New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation |
abstract |
Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense. |
abstractGer |
Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense. |
abstract_unstemmed |
Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 |
container_issue |
13 |
title_short |
New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation |
url |
http://dx.doi.org/10.1073/pnas.1423457112 http://www.pnas.org/content/112/13/4164.abstract http://www.ncbi.nlm.nih.gov/pubmed/25775562 http://search.proquest.com/docview/1672168950 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4386363&tool=pmcentrez&rendertype=abstract |
remote_bool |
false |
author2 |
Dorothee Langel Elisabeth Kaltenegger Dietrich Ober Franziska Heidemann Simon Irmer Nora Podzun Christian Zörb Christoph-Martin Geilfus |
author2Str |
Dorothee Langel Elisabeth Kaltenegger Dietrich Ober Franziska Heidemann Simon Irmer Nora Podzun Christian Zörb Christoph-Martin Geilfus |
ppnlink |
129505269 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1073/pnas.1423457112 |
up_date |
2024-07-03T14:30:06.546Z |
_version_ |
1803568552659124225 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970260076</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714175849.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1423457112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970260076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970260076</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g2415-d91b8c2a935613d20fd8caf2de02c5fa0f026a631b3ca19ccdcd4431cb4691093</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920150000112001304164newaspectofplantrhizobiainteractionalkaloidbiosynt</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Brigitte Schemmerling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crotalaria - microbiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA, Complementary - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Recombinant Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crotalaria - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rhizobium - physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant Roots - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrogen - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alkyl and Aryl Transferases - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pyrrolizidine Alkaloids - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flowers & plants</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enzymes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacteria</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symbiosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pyrrolizidine alkaloids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">root-nodule symbiosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chemical defense</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plant secondary metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alkaloid biosynthesis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dorothee Langel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Elisabeth Kaltenegger</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Dietrich Ober</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Franziska Heidemann</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Simon Irmer</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Nora Podzun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christian Zörb</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Christoph-Martin Geilfus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">112(2015), 13, Seite 4164-4169</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:13</subfield><subfield code="g">pages:4164-4169</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1423457112</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pnas.org/content/112/13/4164.abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25775562</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1672168950</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4386363&tool=pmcentrez&rendertype=abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2015</subfield><subfield code="e">13</subfield><subfield code="h">4164-4169</subfield></datafield></record></collection>
|
score |
7.4009666 |