Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain
Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating...
Ausführliche Beschreibung
Autor*in: |
Jay Chauhan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the National Academy of Sciences of the United States of America - Washington, DC : NAS, 1877, 112(2015), 17, Seite 5455-5460 |
---|---|
Übergeordnetes Werk: |
volume:112 ; year:2015 ; number:17 ; pages:5455-5460 |
Links: |
---|
DOI / URN: |
10.1073/pnas.1422576112 |
---|
Katalog-ID: |
OLC197026358X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC197026358X | ||
003 | DE-627 | ||
005 | 20230714175859.0 | ||
007 | tu | ||
008 | 160211s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1073/pnas.1422576112 |2 doi | |
028 | 5 | 2 | |a PQ20160211 |
035 | |a (DE-627)OLC197026358X | ||
035 | |a (DE-599)GBVOLC197026358X | ||
035 | |a (PRQ)c2500-457022a9666b7d2f8e509367b231a0a2e2a37985f0cccca90e6cc44df2544d503 | ||
035 | |a (KEY)0583363920150000112001705455inhibitionoftlr2signalingbysmallmoleculeinhibitors | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q DNB |
082 | 0 | 4 | |a 570 |q AVZ |
084 | |a LING |2 fid | ||
084 | |a BIODIV |2 fid | ||
100 | 0 | |a Jay Chauhan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. | ||
540 | |a Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences | ||
650 | 4 | |a Benzaldehydes - pharmacology | |
650 | 4 | |a RNA, Messenger - immunology | |
650 | 4 | |a Toll-Like Receptor 2 - immunology | |
650 | 4 | |a Toll-Like Receptor 6 - immunology | |
650 | 4 | |a Interleukin-8 - immunology | |
650 | 4 | |a Toll-Like Receptor 2 - genetics | |
650 | 4 | |a Signal Transduction - immunology | |
650 | 4 | |a Inflammation - chemically induced | |
650 | 4 | |a Toll-Like Receptor 6 - genetics | |
650 | 4 | |a Interleukin-8 - genetics | |
650 | 4 | |a Antioxidants - chemistry | |
650 | 4 | |a Toll-Like Receptor 1 - genetics | |
650 | 4 | |a Inflammation - immunology | |
650 | 4 | |a RNA, Messenger - genetics | |
650 | 4 | |a Benzaldehydes - chemistry | |
650 | 4 | |a Signal Transduction - drug effects | |
650 | 4 | |a Toll-Like Receptor 2 - antagonists & inhibitors | |
650 | 4 | |a Anti-Inflammatory Agents - chemistry | |
650 | 4 | |a Toll-Like Receptor 1 - immunology | |
650 | 4 | |a Inflammation - genetics | |
650 | 4 | |a Antioxidants - pharmacology | |
650 | 4 | |a Signal Transduction - genetics | |
650 | 4 | |a Anti-Inflammatory Agents - pharmacology | |
650 | 4 | |a Inflammation - drug therapy | |
650 | 4 | |a Crystal structure | |
650 | 4 | |a Cytokines | |
650 | 4 | |a Molecules | |
650 | 4 | |a RNA-protein interactions | |
650 | 4 | |a Cells | |
650 | 4 | |a Mutagenesis | |
700 | 0 | |a Greg A. Snyder |4 oth | |
700 | 0 | |a Tristan Dyson |4 oth | |
700 | 0 | |a Ryan S. Schwarz |4 oth | |
700 | 0 | |a Michelle H. W. Laird |4 oth | |
700 | 0 | |a Steven Fletcher |4 oth | |
700 | 0 | |a Stefanie N. Vogel |4 oth | |
700 | 0 | |a Shannon Greene |4 oth | |
700 | 0 | |a Pragnesh Mistry |4 oth | |
700 | 0 | |a Alexander D. MacKerell Jr |4 oth | |
700 | 0 | |a Tsan Sam Xiao |4 oth | |
700 | 0 | |a Vladimir Y. Toshchakov |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Proceedings of the National Academy of Sciences of the United States of America |d Washington, DC : NAS, 1877 |g 112(2015), 17, Seite 5455-5460 |w (DE-627)129505269 |w (DE-600)209104-5 |w (DE-576)014909189 |x 0027-8424 |7 nnns |
773 | 1 | 8 | |g volume:112 |g year:2015 |g number:17 |g pages:5455-5460 |
856 | 4 | 1 | |u http://dx.doi.org/10.1073/pnas.1422576112 |3 Volltext |
856 | 4 | 2 | |u http://www.pnas.org/content/112/17/5455.abstract |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25870276 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1680232398 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-LING | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
951 | |a AR | ||
952 | |d 112 |j 2015 |e 17 |h 5455-5460 |
author_variant |
j c jc |
---|---|
matchkey_str |
article:00278424:2015----::niiinfl2inlnbsaloeueniiosagtnaokt |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1073/pnas.1422576112 doi PQ20160211 (DE-627)OLC197026358X (DE-599)GBVOLC197026358X (PRQ)c2500-457022a9666b7d2f8e509367b231a0a2e2a37985f0cccca90e6cc44df2544d503 (KEY)0583363920150000112001705455inhibitionoftlr2signalingbysmallmoleculeinhibitors DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Jay Chauhan verfasserin aut Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Benzaldehydes - pharmacology RNA, Messenger - immunology Toll-Like Receptor 2 - immunology Toll-Like Receptor 6 - immunology Interleukin-8 - immunology Toll-Like Receptor 2 - genetics Signal Transduction - immunology Inflammation - chemically induced Toll-Like Receptor 6 - genetics Interleukin-8 - genetics Antioxidants - chemistry Toll-Like Receptor 1 - genetics Inflammation - immunology RNA, Messenger - genetics Benzaldehydes - chemistry Signal Transduction - drug effects Toll-Like Receptor 2 - antagonists & inhibitors Anti-Inflammatory Agents - chemistry Toll-Like Receptor 1 - immunology Inflammation - genetics Antioxidants - pharmacology Signal Transduction - genetics Anti-Inflammatory Agents - pharmacology Inflammation - drug therapy Crystal structure Cytokines Molecules RNA-protein interactions Cells Mutagenesis Greg A. Snyder oth Tristan Dyson oth Ryan S. Schwarz oth Michelle H. W. Laird oth Steven Fletcher oth Stefanie N. Vogel oth Shannon Greene oth Pragnesh Mistry oth Alexander D. MacKerell Jr oth Tsan Sam Xiao oth Vladimir Y. Toshchakov oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 17, Seite 5455-5460 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:17 pages:5455-5460 http://dx.doi.org/10.1073/pnas.1422576112 Volltext http://www.pnas.org/content/112/17/5455.abstract http://www.ncbi.nlm.nih.gov/pubmed/25870276 http://search.proquest.com/docview/1680232398 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 17 5455-5460 |
spelling |
10.1073/pnas.1422576112 doi PQ20160211 (DE-627)OLC197026358X (DE-599)GBVOLC197026358X (PRQ)c2500-457022a9666b7d2f8e509367b231a0a2e2a37985f0cccca90e6cc44df2544d503 (KEY)0583363920150000112001705455inhibitionoftlr2signalingbysmallmoleculeinhibitors DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Jay Chauhan verfasserin aut Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Benzaldehydes - pharmacology RNA, Messenger - immunology Toll-Like Receptor 2 - immunology Toll-Like Receptor 6 - immunology Interleukin-8 - immunology Toll-Like Receptor 2 - genetics Signal Transduction - immunology Inflammation - chemically induced Toll-Like Receptor 6 - genetics Interleukin-8 - genetics Antioxidants - chemistry Toll-Like Receptor 1 - genetics Inflammation - immunology RNA, Messenger - genetics Benzaldehydes - chemistry Signal Transduction - drug effects Toll-Like Receptor 2 - antagonists & inhibitors Anti-Inflammatory Agents - chemistry Toll-Like Receptor 1 - immunology Inflammation - genetics Antioxidants - pharmacology Signal Transduction - genetics Anti-Inflammatory Agents - pharmacology Inflammation - drug therapy Crystal structure Cytokines Molecules RNA-protein interactions Cells Mutagenesis Greg A. Snyder oth Tristan Dyson oth Ryan S. Schwarz oth Michelle H. W. Laird oth Steven Fletcher oth Stefanie N. Vogel oth Shannon Greene oth Pragnesh Mistry oth Alexander D. MacKerell Jr oth Tsan Sam Xiao oth Vladimir Y. Toshchakov oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 17, Seite 5455-5460 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:17 pages:5455-5460 http://dx.doi.org/10.1073/pnas.1422576112 Volltext http://www.pnas.org/content/112/17/5455.abstract http://www.ncbi.nlm.nih.gov/pubmed/25870276 http://search.proquest.com/docview/1680232398 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 17 5455-5460 |
allfields_unstemmed |
10.1073/pnas.1422576112 doi PQ20160211 (DE-627)OLC197026358X (DE-599)GBVOLC197026358X (PRQ)c2500-457022a9666b7d2f8e509367b231a0a2e2a37985f0cccca90e6cc44df2544d503 (KEY)0583363920150000112001705455inhibitionoftlr2signalingbysmallmoleculeinhibitors DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Jay Chauhan verfasserin aut Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Benzaldehydes - pharmacology RNA, Messenger - immunology Toll-Like Receptor 2 - immunology Toll-Like Receptor 6 - immunology Interleukin-8 - immunology Toll-Like Receptor 2 - genetics Signal Transduction - immunology Inflammation - chemically induced Toll-Like Receptor 6 - genetics Interleukin-8 - genetics Antioxidants - chemistry Toll-Like Receptor 1 - genetics Inflammation - immunology RNA, Messenger - genetics Benzaldehydes - chemistry Signal Transduction - drug effects Toll-Like Receptor 2 - antagonists & inhibitors Anti-Inflammatory Agents - chemistry Toll-Like Receptor 1 - immunology Inflammation - genetics Antioxidants - pharmacology Signal Transduction - genetics Anti-Inflammatory Agents - pharmacology Inflammation - drug therapy Crystal structure Cytokines Molecules RNA-protein interactions Cells Mutagenesis Greg A. Snyder oth Tristan Dyson oth Ryan S. Schwarz oth Michelle H. W. Laird oth Steven Fletcher oth Stefanie N. Vogel oth Shannon Greene oth Pragnesh Mistry oth Alexander D. MacKerell Jr oth Tsan Sam Xiao oth Vladimir Y. Toshchakov oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 17, Seite 5455-5460 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:17 pages:5455-5460 http://dx.doi.org/10.1073/pnas.1422576112 Volltext http://www.pnas.org/content/112/17/5455.abstract http://www.ncbi.nlm.nih.gov/pubmed/25870276 http://search.proquest.com/docview/1680232398 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 17 5455-5460 |
allfieldsGer |
10.1073/pnas.1422576112 doi PQ20160211 (DE-627)OLC197026358X (DE-599)GBVOLC197026358X (PRQ)c2500-457022a9666b7d2f8e509367b231a0a2e2a37985f0cccca90e6cc44df2544d503 (KEY)0583363920150000112001705455inhibitionoftlr2signalingbysmallmoleculeinhibitors DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Jay Chauhan verfasserin aut Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Benzaldehydes - pharmacology RNA, Messenger - immunology Toll-Like Receptor 2 - immunology Toll-Like Receptor 6 - immunology Interleukin-8 - immunology Toll-Like Receptor 2 - genetics Signal Transduction - immunology Inflammation - chemically induced Toll-Like Receptor 6 - genetics Interleukin-8 - genetics Antioxidants - chemistry Toll-Like Receptor 1 - genetics Inflammation - immunology RNA, Messenger - genetics Benzaldehydes - chemistry Signal Transduction - drug effects Toll-Like Receptor 2 - antagonists & inhibitors Anti-Inflammatory Agents - chemistry Toll-Like Receptor 1 - immunology Inflammation - genetics Antioxidants - pharmacology Signal Transduction - genetics Anti-Inflammatory Agents - pharmacology Inflammation - drug therapy Crystal structure Cytokines Molecules RNA-protein interactions Cells Mutagenesis Greg A. Snyder oth Tristan Dyson oth Ryan S. Schwarz oth Michelle H. W. Laird oth Steven Fletcher oth Stefanie N. Vogel oth Shannon Greene oth Pragnesh Mistry oth Alexander D. MacKerell Jr oth Tsan Sam Xiao oth Vladimir Y. Toshchakov oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 17, Seite 5455-5460 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:17 pages:5455-5460 http://dx.doi.org/10.1073/pnas.1422576112 Volltext http://www.pnas.org/content/112/17/5455.abstract http://www.ncbi.nlm.nih.gov/pubmed/25870276 http://search.proquest.com/docview/1680232398 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 17 5455-5460 |
allfieldsSound |
10.1073/pnas.1422576112 doi PQ20160211 (DE-627)OLC197026358X (DE-599)GBVOLC197026358X (PRQ)c2500-457022a9666b7d2f8e509367b231a0a2e2a37985f0cccca90e6cc44df2544d503 (KEY)0583363920150000112001705455inhibitionoftlr2signalingbysmallmoleculeinhibitors DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Jay Chauhan verfasserin aut Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Benzaldehydes - pharmacology RNA, Messenger - immunology Toll-Like Receptor 2 - immunology Toll-Like Receptor 6 - immunology Interleukin-8 - immunology Toll-Like Receptor 2 - genetics Signal Transduction - immunology Inflammation - chemically induced Toll-Like Receptor 6 - genetics Interleukin-8 - genetics Antioxidants - chemistry Toll-Like Receptor 1 - genetics Inflammation - immunology RNA, Messenger - genetics Benzaldehydes - chemistry Signal Transduction - drug effects Toll-Like Receptor 2 - antagonists & inhibitors Anti-Inflammatory Agents - chemistry Toll-Like Receptor 1 - immunology Inflammation - genetics Antioxidants - pharmacology Signal Transduction - genetics Anti-Inflammatory Agents - pharmacology Inflammation - drug therapy Crystal structure Cytokines Molecules RNA-protein interactions Cells Mutagenesis Greg A. Snyder oth Tristan Dyson oth Ryan S. Schwarz oth Michelle H. W. Laird oth Steven Fletcher oth Stefanie N. Vogel oth Shannon Greene oth Pragnesh Mistry oth Alexander D. MacKerell Jr oth Tsan Sam Xiao oth Vladimir Y. Toshchakov oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 17, Seite 5455-5460 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:17 pages:5455-5460 http://dx.doi.org/10.1073/pnas.1422576112 Volltext http://www.pnas.org/content/112/17/5455.abstract http://www.ncbi.nlm.nih.gov/pubmed/25870276 http://search.proquest.com/docview/1680232398 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 17 5455-5460 |
language |
English |
source |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 112(2015), 17, Seite 5455-5460 volume:112 year:2015 number:17 pages:5455-5460 |
sourceStr |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 112(2015), 17, Seite 5455-5460 volume:112 year:2015 number:17 pages:5455-5460 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Benzaldehydes - pharmacology RNA, Messenger - immunology Toll-Like Receptor 2 - immunology Toll-Like Receptor 6 - immunology Interleukin-8 - immunology Toll-Like Receptor 2 - genetics Signal Transduction - immunology Inflammation - chemically induced Toll-Like Receptor 6 - genetics Interleukin-8 - genetics Antioxidants - chemistry Toll-Like Receptor 1 - genetics Inflammation - immunology RNA, Messenger - genetics Benzaldehydes - chemistry Signal Transduction - drug effects Toll-Like Receptor 2 - antagonists & inhibitors Anti-Inflammatory Agents - chemistry Toll-Like Receptor 1 - immunology Inflammation - genetics Antioxidants - pharmacology Signal Transduction - genetics Anti-Inflammatory Agents - pharmacology Inflammation - drug therapy Crystal structure Cytokines Molecules RNA-protein interactions Cells Mutagenesis |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the National Academy of Sciences of the United States of America |
authorswithroles_txt_mv |
Jay Chauhan @@aut@@ Greg A. Snyder @@oth@@ Tristan Dyson @@oth@@ Ryan S. Schwarz @@oth@@ Michelle H. W. Laird @@oth@@ Steven Fletcher @@oth@@ Stefanie N. Vogel @@oth@@ Shannon Greene @@oth@@ Pragnesh Mistry @@oth@@ Alexander D. MacKerell Jr @@oth@@ Tsan Sam Xiao @@oth@@ Vladimir Y. Toshchakov @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129505269 |
dewey-sort |
3500 |
id |
OLC197026358X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197026358X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714175859.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1422576112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197026358X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197026358X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2500-457022a9666b7d2f8e509367b231a0a2e2a37985f0cccca90e6cc44df2544d503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920150000112001705455inhibitionoftlr2signalingbysmallmoleculeinhibitors</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jay Chauhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Benzaldehydes - pharmacology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Messenger - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 2 - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 6 - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interleukin-8 - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 2 - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal Transduction - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammation - chemically induced</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 6 - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interleukin-8 - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antioxidants - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 1 - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammation - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Messenger - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Benzaldehydes - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal Transduction - drug effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 2 - antagonists & inhibitors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-Inflammatory Agents - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 1 - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammation - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antioxidants - pharmacology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal Transduction - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-Inflammatory Agents - pharmacology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammation - drug therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cytokines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-protein interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutagenesis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Greg A. Snyder</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tristan Dyson</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ryan S. Schwarz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michelle H. W. Laird</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steven Fletcher</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stefanie N. Vogel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shannon Greene</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pragnesh Mistry</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander D. MacKerell Jr</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tsan Sam Xiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladimir Y. Toshchakov</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">112(2015), 17, Seite 5455-5460</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:17</subfield><subfield code="g">pages:5455-5460</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1422576112</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pnas.org/content/112/17/5455.abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25870276</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1680232398</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2015</subfield><subfield code="e">17</subfield><subfield code="h">5455-5460</subfield></datafield></record></collection>
|
author |
Jay Chauhan |
spellingShingle |
Jay Chauhan ddc 500 ddc 570 fid LING fid BIODIV misc Benzaldehydes - pharmacology misc RNA, Messenger - immunology misc Toll-Like Receptor 2 - immunology misc Toll-Like Receptor 6 - immunology misc Interleukin-8 - immunology misc Toll-Like Receptor 2 - genetics misc Signal Transduction - immunology misc Inflammation - chemically induced misc Toll-Like Receptor 6 - genetics misc Interleukin-8 - genetics misc Antioxidants - chemistry misc Toll-Like Receptor 1 - genetics misc Inflammation - immunology misc RNA, Messenger - genetics misc Benzaldehydes - chemistry misc Signal Transduction - drug effects misc Toll-Like Receptor 2 - antagonists & inhibitors misc Anti-Inflammatory Agents - chemistry misc Toll-Like Receptor 1 - immunology misc Inflammation - genetics misc Antioxidants - pharmacology misc Signal Transduction - genetics misc Anti-Inflammatory Agents - pharmacology misc Inflammation - drug therapy misc Crystal structure misc Cytokines misc Molecules misc RNA-protein interactions misc Cells misc Mutagenesis Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain |
authorStr |
Jay Chauhan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129505269 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0027-8424 |
topic_title |
500 DNB 570 AVZ LING fid BIODIV fid Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain Benzaldehydes - pharmacology RNA, Messenger - immunology Toll-Like Receptor 2 - immunology Toll-Like Receptor 6 - immunology Interleukin-8 - immunology Toll-Like Receptor 2 - genetics Signal Transduction - immunology Inflammation - chemically induced Toll-Like Receptor 6 - genetics Interleukin-8 - genetics Antioxidants - chemistry Toll-Like Receptor 1 - genetics Inflammation - immunology RNA, Messenger - genetics Benzaldehydes - chemistry Signal Transduction - drug effects Toll-Like Receptor 2 - antagonists & inhibitors Anti-Inflammatory Agents - chemistry Toll-Like Receptor 1 - immunology Inflammation - genetics Antioxidants - pharmacology Signal Transduction - genetics Anti-Inflammatory Agents - pharmacology Inflammation - drug therapy Crystal structure Cytokines Molecules RNA-protein interactions Cells Mutagenesis |
topic |
ddc 500 ddc 570 fid LING fid BIODIV misc Benzaldehydes - pharmacology misc RNA, Messenger - immunology misc Toll-Like Receptor 2 - immunology misc Toll-Like Receptor 6 - immunology misc Interleukin-8 - immunology misc Toll-Like Receptor 2 - genetics misc Signal Transduction - immunology misc Inflammation - chemically induced misc Toll-Like Receptor 6 - genetics misc Interleukin-8 - genetics misc Antioxidants - chemistry misc Toll-Like Receptor 1 - genetics misc Inflammation - immunology misc RNA, Messenger - genetics misc Benzaldehydes - chemistry misc Signal Transduction - drug effects misc Toll-Like Receptor 2 - antagonists & inhibitors misc Anti-Inflammatory Agents - chemistry misc Toll-Like Receptor 1 - immunology misc Inflammation - genetics misc Antioxidants - pharmacology misc Signal Transduction - genetics misc Anti-Inflammatory Agents - pharmacology misc Inflammation - drug therapy misc Crystal structure misc Cytokines misc Molecules misc RNA-protein interactions misc Cells misc Mutagenesis |
topic_unstemmed |
ddc 500 ddc 570 fid LING fid BIODIV misc Benzaldehydes - pharmacology misc RNA, Messenger - immunology misc Toll-Like Receptor 2 - immunology misc Toll-Like Receptor 6 - immunology misc Interleukin-8 - immunology misc Toll-Like Receptor 2 - genetics misc Signal Transduction - immunology misc Inflammation - chemically induced misc Toll-Like Receptor 6 - genetics misc Interleukin-8 - genetics misc Antioxidants - chemistry misc Toll-Like Receptor 1 - genetics misc Inflammation - immunology misc RNA, Messenger - genetics misc Benzaldehydes - chemistry misc Signal Transduction - drug effects misc Toll-Like Receptor 2 - antagonists & inhibitors misc Anti-Inflammatory Agents - chemistry misc Toll-Like Receptor 1 - immunology misc Inflammation - genetics misc Antioxidants - pharmacology misc Signal Transduction - genetics misc Anti-Inflammatory Agents - pharmacology misc Inflammation - drug therapy misc Crystal structure misc Cytokines misc Molecules misc RNA-protein interactions misc Cells misc Mutagenesis |
topic_browse |
ddc 500 ddc 570 fid LING fid BIODIV misc Benzaldehydes - pharmacology misc RNA, Messenger - immunology misc Toll-Like Receptor 2 - immunology misc Toll-Like Receptor 6 - immunology misc Interleukin-8 - immunology misc Toll-Like Receptor 2 - genetics misc Signal Transduction - immunology misc Inflammation - chemically induced misc Toll-Like Receptor 6 - genetics misc Interleukin-8 - genetics misc Antioxidants - chemistry misc Toll-Like Receptor 1 - genetics misc Inflammation - immunology misc RNA, Messenger - genetics misc Benzaldehydes - chemistry misc Signal Transduction - drug effects misc Toll-Like Receptor 2 - antagonists & inhibitors misc Anti-Inflammatory Agents - chemistry misc Toll-Like Receptor 1 - immunology misc Inflammation - genetics misc Antioxidants - pharmacology misc Signal Transduction - genetics misc Anti-Inflammatory Agents - pharmacology misc Inflammation - drug therapy misc Crystal structure misc Cytokines misc Molecules misc RNA-protein interactions misc Cells misc Mutagenesis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
g a s gas t d td r s s rss m h w l mhwl s f sf s n v snv s g sg p m pm a d m j admj t s x tsx v y t vyt |
hierarchy_parent_title |
Proceedings of the National Academy of Sciences of the United States of America |
hierarchy_parent_id |
129505269 |
dewey-tens |
500 - Science 570 - Life sciences; biology |
hierarchy_top_title |
Proceedings of the National Academy of Sciences of the United States of America |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 |
title |
Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain |
ctrlnum |
(DE-627)OLC197026358X (DE-599)GBVOLC197026358X (PRQ)c2500-457022a9666b7d2f8e509367b231a0a2e2a37985f0cccca90e6cc44df2544d503 (KEY)0583363920150000112001705455inhibitionoftlr2signalingbysmallmoleculeinhibitors |
title_full |
Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain |
author_sort |
Jay Chauhan |
journal |
Proceedings of the National Academy of Sciences of the United States of America |
journalStr |
Proceedings of the National Academy of Sciences of the United States of America |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
5455 |
author_browse |
Jay Chauhan |
container_volume |
112 |
class |
500 DNB 570 AVZ LING fid BIODIV fid |
format_se |
Aufsätze |
author-letter |
Jay Chauhan |
doi_str_mv |
10.1073/pnas.1422576112 |
dewey-full |
500 570 |
title_sort |
inhibition of tlr2 signaling by small molecule inhibitors targeting a pocket within the tlr2 tir domain |
title_auth |
Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain |
abstract |
Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. |
abstractGer |
Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. |
abstract_unstemmed |
Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 |
container_issue |
17 |
title_short |
Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain |
url |
http://dx.doi.org/10.1073/pnas.1422576112 http://www.pnas.org/content/112/17/5455.abstract http://www.ncbi.nlm.nih.gov/pubmed/25870276 http://search.proquest.com/docview/1680232398 |
remote_bool |
false |
author2 |
Greg A. Snyder Tristan Dyson Ryan S. Schwarz Michelle H. W. Laird Steven Fletcher Stefanie N. Vogel Shannon Greene Pragnesh Mistry Alexander D. MacKerell Jr Tsan Sam Xiao Vladimir Y. Toshchakov |
author2Str |
Greg A. Snyder Tristan Dyson Ryan S. Schwarz Michelle H. W. Laird Steven Fletcher Stefanie N. Vogel Shannon Greene Pragnesh Mistry Alexander D. MacKerell Jr Tsan Sam Xiao Vladimir Y. Toshchakov |
ppnlink |
129505269 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1073/pnas.1422576112 |
up_date |
2024-07-03T14:31:17.813Z |
_version_ |
1803568627387990016 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197026358X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714175859.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1422576112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197026358X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197026358X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2500-457022a9666b7d2f8e509367b231a0a2e2a37985f0cccca90e6cc44df2544d503</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920150000112001705455inhibitionoftlr2signalingbysmallmoleculeinhibitors</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Jay Chauhan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Toll-like receptor (TLR) signaling is initiated by dimerization of intracellular Toll/IL-1 receptor resistance (TIR) domains. For all TLRs except TLR3, recruitment of the adapter, myeloid differentiation primary response gene 88 (MyD88), to TLR TIR domains results in downstream signaling culminating in proinflammatory cytokine production. Therefore, blocking TLR TIR dimerization may ameliorate TLR2-mediated hyperinflammatory states. The BB loop within the TLR TIR domain is critical for mediating certain protein-protein interactions. Examination of the human TLR2 TIR domain crystal structure revealed a pocket adjacent to the highly conserved P681 and G682 BB loop residues. Using computer-aided drug design (CADD), we sought to identify a small molecule inhibitor(s) that would fit within this pocket and potentially disrupt TLR2 signaling. In silico screening identified 149 compounds and 20 US Food and Drug Administration-approved drugs based on their predicted ability to bind in the BB loop pocket. These compounds were screened in HEK293T-TLR2 transfectants for the ability to inhibit TLR2-mediated IL-8 mRNA. C16H15NO4 (C29) was identified as a potential TLR2 inhibitor. C29, and its derivative, ortho-vanillin (o-vanillin), inhibited TLR2/1 and TLR2/6 signaling induced by synthetic and bacterial TLR2 agonists in human HEK-TLR2 and THP-1 cells, but only TLR2/1 signaling in murine macrophages. C29 failed to inhibit signaling induced by other TLR agonists and TNF-α. Mutagenesis of BB loop pocket residues revealed an indispensable role for TLR2/1, but not TLR2/6, signaling, suggesting divergent roles. Mice treated with o-vanillin exhibited reduced TLR2-induced inflammation. Our data provide proof of principle that targeting the BB loop pocket is an effective approach for identification of TLR2 signaling inhibitors.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Benzaldehydes - pharmacology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Messenger - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 2 - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 6 - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interleukin-8 - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 2 - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal Transduction - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammation - chemically induced</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 6 - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interleukin-8 - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antioxidants - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 1 - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammation - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA, Messenger - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Benzaldehydes - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal Transduction - drug effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 2 - antagonists & inhibitors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-Inflammatory Agents - chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toll-Like Receptor 1 - immunology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammation - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Antioxidants - pharmacology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal Transduction - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-Inflammatory Agents - pharmacology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammation - drug therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cytokines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-protein interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cells</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutagenesis</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Greg A. Snyder</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tristan Dyson</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Ryan S. Schwarz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michelle H. W. Laird</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Steven Fletcher</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Stefanie N. Vogel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shannon Greene</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Pragnesh Mistry</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Alexander D. MacKerell Jr</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tsan Sam Xiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Vladimir Y. Toshchakov</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">112(2015), 17, Seite 5455-5460</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:17</subfield><subfield code="g">pages:5455-5460</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1422576112</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pnas.org/content/112/17/5455.abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25870276</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1680232398</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2015</subfield><subfield code="e">17</subfield><subfield code="h">5455-5460</subfield></datafield></record></collection>
|
score |
7.4012766 |