Light signaling controls nuclear architecture reorganization during seedling establishment
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determ...
Ausführliche Beschreibung
Autor*in: |
Clara Bourbousse [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the National Academy of Sciences of the United States of America - Washington, DC : NAS, 1877, 112(2015), 21, Seite E2836 |
---|---|
Übergeordnetes Werk: |
volume:112 ; year:2015 ; number:21 ; pages:E2836 |
Links: |
---|
DOI / URN: |
10.1073/pnas.1503512112 |
---|
Katalog-ID: |
OLC1970269324 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1970269324 | ||
003 | DE-627 | ||
005 | 20230714175915.0 | ||
007 | tu | ||
008 | 160211s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1073/pnas.1503512112 |2 doi | |
028 | 5 | 2 | |a PQ20160211 |
035 | |a (DE-627)OLC1970269324 | ||
035 | |a (DE-599)GBVOLC1970269324 | ||
035 | |a (PRQ)c2226-1831b8674e1270256c27b2c60921022c1a5d288a070cda10f2daeb5d85e55393 | ||
035 | |a (KEY)0583363920150000112002102836lightsignalingcontrolsnucleararchitecturereorganiz | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q DNB |
082 | 0 | 4 | |a 570 |q AVZ |
084 | |a LING |2 fid | ||
084 | |a BIODIV |2 fid | ||
100 | 0 | |a Clara Bourbousse |e verfasserin |4 aut | |
245 | 1 | 0 | |a Light signaling controls nuclear architecture reorganization during seedling establishment |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. | ||
540 | |a Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences | ||
650 | 4 | |a Nuclear Proteins - metabolism | |
650 | 4 | |a Cell Nucleus - radiation effects | |
650 | 4 | |a Arabidopsis - growth & development | |
650 | 4 | |a Cell Nucleus - genetics | |
650 | 4 | |a RNA Polymerase II - metabolism | |
650 | 4 | |a Seedlings - radiation effects | |
650 | 4 | |a Arabidopsis - genetics | |
650 | 4 | |a Heterochromatin - radiation effects | |
650 | 4 | |a Arabidopsis Proteins - metabolism | |
650 | 4 | |a Light Signal Transduction - genetics | |
650 | 4 | |a Chromatin Assembly and Disassembly - radiation effects | |
650 | 4 | |a Cell Nucleus - metabolism | |
650 | 4 | |a Arabidopsis Proteins - genetics | |
650 | 4 | |a Ubiquitin-Protein Ligases - metabolism | |
650 | 4 | |a Chromatin Assembly and Disassembly - genetics | |
650 | 4 | |a Nuclear Proteins - genetics | |
650 | 4 | |a Seedlings - growth & development | |
650 | 4 | |a Cotyledon - radiation effects | |
650 | 4 | |a Cotyledon - growth & development | |
650 | 4 | |a Arabidopsis - radiation effects | |
650 | 4 | |a Cotyledon - metabolism | |
650 | 4 | |a Heterochromatin - genetics | |
650 | 4 | |a Ubiquitin-Protein Ligases - genetics | |
650 | 4 | |a Seedlings - metabolism | |
650 | 4 | |a Germination | |
650 | 4 | |a Chromatin | |
650 | 4 | |a Photosynthesis | |
650 | 4 | |a DNA methylation | |
650 | 4 | |a Ribonucleic acid--RNA | |
650 | 4 | |a Light | |
650 | 4 | |a Signal transduction | |
700 | 0 | |a Gerald Zabulon |4 oth | |
700 | 0 | |a Fredy Barneche |4 oth | |
700 | 0 | |a Chris Bowler |4 oth | |
700 | 0 | |a Maria A. Koini |4 oth | |
700 | 0 | |a Mickaël Bourge |4 oth | |
700 | 0 | |a Spencer C. Brown |4 oth | |
700 | 0 | |a Imen Mestiri |4 oth | |
700 | 0 | |a Fabio Formiggini |4 oth | |
700 | 0 | |a Paul Fransz |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Proceedings of the National Academy of Sciences of the United States of America |d Washington, DC : NAS, 1877 |g 112(2015), 21, Seite E2836 |w (DE-627)129505269 |w (DE-600)209104-5 |w (DE-576)014909189 |x 0027-8424 |7 nnns |
773 | 1 | 8 | |g volume:112 |g year:2015 |g number:21 |g pages:E2836 |
856 | 4 | 1 | |u http://dx.doi.org/10.1073/pnas.1503512112 |3 Volltext |
856 | 4 | 2 | |u http://www.pnas.org/content/112/21/E2836.abstract |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/25964332 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1686815648 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-LING | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
951 | |a AR | ||
952 | |d 112 |j 2015 |e 21 |h E2836 |
author_variant |
c b cb |
---|---|
matchkey_str |
article:00278424:2015----::ihsgaigotosulaacietrrognztodrn |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1073/pnas.1503512112 doi PQ20160211 (DE-627)OLC1970269324 (DE-599)GBVOLC1970269324 (PRQ)c2226-1831b8674e1270256c27b2c60921022c1a5d288a070cda10f2daeb5d85e55393 (KEY)0583363920150000112002102836lightsignalingcontrolsnucleararchitecturereorganiz DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Clara Bourbousse verfasserin aut Light signaling controls nuclear architecture reorganization during seedling establishment 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Nuclear Proteins - metabolism Cell Nucleus - radiation effects Arabidopsis - growth & development Cell Nucleus - genetics RNA Polymerase II - metabolism Seedlings - radiation effects Arabidopsis - genetics Heterochromatin - radiation effects Arabidopsis Proteins - metabolism Light Signal Transduction - genetics Chromatin Assembly and Disassembly - radiation effects Cell Nucleus - metabolism Arabidopsis Proteins - genetics Ubiquitin-Protein Ligases - metabolism Chromatin Assembly and Disassembly - genetics Nuclear Proteins - genetics Seedlings - growth & development Cotyledon - radiation effects Cotyledon - growth & development Arabidopsis - radiation effects Cotyledon - metabolism Heterochromatin - genetics Ubiquitin-Protein Ligases - genetics Seedlings - metabolism Germination Chromatin Photosynthesis DNA methylation Ribonucleic acid--RNA Light Signal transduction Gerald Zabulon oth Fredy Barneche oth Chris Bowler oth Maria A. Koini oth Mickaël Bourge oth Spencer C. Brown oth Imen Mestiri oth Fabio Formiggini oth Paul Fransz oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 21, Seite E2836 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:21 pages:E2836 http://dx.doi.org/10.1073/pnas.1503512112 Volltext http://www.pnas.org/content/112/21/E2836.abstract http://www.ncbi.nlm.nih.gov/pubmed/25964332 http://search.proquest.com/docview/1686815648 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 21 E2836 |
spelling |
10.1073/pnas.1503512112 doi PQ20160211 (DE-627)OLC1970269324 (DE-599)GBVOLC1970269324 (PRQ)c2226-1831b8674e1270256c27b2c60921022c1a5d288a070cda10f2daeb5d85e55393 (KEY)0583363920150000112002102836lightsignalingcontrolsnucleararchitecturereorganiz DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Clara Bourbousse verfasserin aut Light signaling controls nuclear architecture reorganization during seedling establishment 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Nuclear Proteins - metabolism Cell Nucleus - radiation effects Arabidopsis - growth & development Cell Nucleus - genetics RNA Polymerase II - metabolism Seedlings - radiation effects Arabidopsis - genetics Heterochromatin - radiation effects Arabidopsis Proteins - metabolism Light Signal Transduction - genetics Chromatin Assembly and Disassembly - radiation effects Cell Nucleus - metabolism Arabidopsis Proteins - genetics Ubiquitin-Protein Ligases - metabolism Chromatin Assembly and Disassembly - genetics Nuclear Proteins - genetics Seedlings - growth & development Cotyledon - radiation effects Cotyledon - growth & development Arabidopsis - radiation effects Cotyledon - metabolism Heterochromatin - genetics Ubiquitin-Protein Ligases - genetics Seedlings - metabolism Germination Chromatin Photosynthesis DNA methylation Ribonucleic acid--RNA Light Signal transduction Gerald Zabulon oth Fredy Barneche oth Chris Bowler oth Maria A. Koini oth Mickaël Bourge oth Spencer C. Brown oth Imen Mestiri oth Fabio Formiggini oth Paul Fransz oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 21, Seite E2836 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:21 pages:E2836 http://dx.doi.org/10.1073/pnas.1503512112 Volltext http://www.pnas.org/content/112/21/E2836.abstract http://www.ncbi.nlm.nih.gov/pubmed/25964332 http://search.proquest.com/docview/1686815648 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 21 E2836 |
allfields_unstemmed |
10.1073/pnas.1503512112 doi PQ20160211 (DE-627)OLC1970269324 (DE-599)GBVOLC1970269324 (PRQ)c2226-1831b8674e1270256c27b2c60921022c1a5d288a070cda10f2daeb5d85e55393 (KEY)0583363920150000112002102836lightsignalingcontrolsnucleararchitecturereorganiz DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Clara Bourbousse verfasserin aut Light signaling controls nuclear architecture reorganization during seedling establishment 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Nuclear Proteins - metabolism Cell Nucleus - radiation effects Arabidopsis - growth & development Cell Nucleus - genetics RNA Polymerase II - metabolism Seedlings - radiation effects Arabidopsis - genetics Heterochromatin - radiation effects Arabidopsis Proteins - metabolism Light Signal Transduction - genetics Chromatin Assembly and Disassembly - radiation effects Cell Nucleus - metabolism Arabidopsis Proteins - genetics Ubiquitin-Protein Ligases - metabolism Chromatin Assembly and Disassembly - genetics Nuclear Proteins - genetics Seedlings - growth & development Cotyledon - radiation effects Cotyledon - growth & development Arabidopsis - radiation effects Cotyledon - metabolism Heterochromatin - genetics Ubiquitin-Protein Ligases - genetics Seedlings - metabolism Germination Chromatin Photosynthesis DNA methylation Ribonucleic acid--RNA Light Signal transduction Gerald Zabulon oth Fredy Barneche oth Chris Bowler oth Maria A. Koini oth Mickaël Bourge oth Spencer C. Brown oth Imen Mestiri oth Fabio Formiggini oth Paul Fransz oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 21, Seite E2836 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:21 pages:E2836 http://dx.doi.org/10.1073/pnas.1503512112 Volltext http://www.pnas.org/content/112/21/E2836.abstract http://www.ncbi.nlm.nih.gov/pubmed/25964332 http://search.proquest.com/docview/1686815648 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 21 E2836 |
allfieldsGer |
10.1073/pnas.1503512112 doi PQ20160211 (DE-627)OLC1970269324 (DE-599)GBVOLC1970269324 (PRQ)c2226-1831b8674e1270256c27b2c60921022c1a5d288a070cda10f2daeb5d85e55393 (KEY)0583363920150000112002102836lightsignalingcontrolsnucleararchitecturereorganiz DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Clara Bourbousse verfasserin aut Light signaling controls nuclear architecture reorganization during seedling establishment 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Nuclear Proteins - metabolism Cell Nucleus - radiation effects Arabidopsis - growth & development Cell Nucleus - genetics RNA Polymerase II - metabolism Seedlings - radiation effects Arabidopsis - genetics Heterochromatin - radiation effects Arabidopsis Proteins - metabolism Light Signal Transduction - genetics Chromatin Assembly and Disassembly - radiation effects Cell Nucleus - metabolism Arabidopsis Proteins - genetics Ubiquitin-Protein Ligases - metabolism Chromatin Assembly and Disassembly - genetics Nuclear Proteins - genetics Seedlings - growth & development Cotyledon - radiation effects Cotyledon - growth & development Arabidopsis - radiation effects Cotyledon - metabolism Heterochromatin - genetics Ubiquitin-Protein Ligases - genetics Seedlings - metabolism Germination Chromatin Photosynthesis DNA methylation Ribonucleic acid--RNA Light Signal transduction Gerald Zabulon oth Fredy Barneche oth Chris Bowler oth Maria A. Koini oth Mickaël Bourge oth Spencer C. Brown oth Imen Mestiri oth Fabio Formiggini oth Paul Fransz oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 21, Seite E2836 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:21 pages:E2836 http://dx.doi.org/10.1073/pnas.1503512112 Volltext http://www.pnas.org/content/112/21/E2836.abstract http://www.ncbi.nlm.nih.gov/pubmed/25964332 http://search.proquest.com/docview/1686815648 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 21 E2836 |
allfieldsSound |
10.1073/pnas.1503512112 doi PQ20160211 (DE-627)OLC1970269324 (DE-599)GBVOLC1970269324 (PRQ)c2226-1831b8674e1270256c27b2c60921022c1a5d288a070cda10f2daeb5d85e55393 (KEY)0583363920150000112002102836lightsignalingcontrolsnucleararchitecturereorganiz DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Clara Bourbousse verfasserin aut Light signaling controls nuclear architecture reorganization during seedling establishment 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences Nuclear Proteins - metabolism Cell Nucleus - radiation effects Arabidopsis - growth & development Cell Nucleus - genetics RNA Polymerase II - metabolism Seedlings - radiation effects Arabidopsis - genetics Heterochromatin - radiation effects Arabidopsis Proteins - metabolism Light Signal Transduction - genetics Chromatin Assembly and Disassembly - radiation effects Cell Nucleus - metabolism Arabidopsis Proteins - genetics Ubiquitin-Protein Ligases - metabolism Chromatin Assembly and Disassembly - genetics Nuclear Proteins - genetics Seedlings - growth & development Cotyledon - radiation effects Cotyledon - growth & development Arabidopsis - radiation effects Cotyledon - metabolism Heterochromatin - genetics Ubiquitin-Protein Ligases - genetics Seedlings - metabolism Germination Chromatin Photosynthesis DNA methylation Ribonucleic acid--RNA Light Signal transduction Gerald Zabulon oth Fredy Barneche oth Chris Bowler oth Maria A. Koini oth Mickaël Bourge oth Spencer C. Brown oth Imen Mestiri oth Fabio Formiggini oth Paul Fransz oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 21, Seite E2836 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:21 pages:E2836 http://dx.doi.org/10.1073/pnas.1503512112 Volltext http://www.pnas.org/content/112/21/E2836.abstract http://www.ncbi.nlm.nih.gov/pubmed/25964332 http://search.proquest.com/docview/1686815648 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 21 E2836 |
language |
English |
source |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 112(2015), 21, Seite E2836 volume:112 year:2015 number:21 pages:E2836 |
sourceStr |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 112(2015), 21, Seite E2836 volume:112 year:2015 number:21 pages:E2836 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nuclear Proteins - metabolism Cell Nucleus - radiation effects Arabidopsis - growth & development Cell Nucleus - genetics RNA Polymerase II - metabolism Seedlings - radiation effects Arabidopsis - genetics Heterochromatin - radiation effects Arabidopsis Proteins - metabolism Light Signal Transduction - genetics Chromatin Assembly and Disassembly - radiation effects Cell Nucleus - metabolism Arabidopsis Proteins - genetics Ubiquitin-Protein Ligases - metabolism Chromatin Assembly and Disassembly - genetics Nuclear Proteins - genetics Seedlings - growth & development Cotyledon - radiation effects Cotyledon - growth & development Arabidopsis - radiation effects Cotyledon - metabolism Heterochromatin - genetics Ubiquitin-Protein Ligases - genetics Seedlings - metabolism Germination Chromatin Photosynthesis DNA methylation Ribonucleic acid--RNA Light Signal transduction |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the National Academy of Sciences of the United States of America |
authorswithroles_txt_mv |
Clara Bourbousse @@aut@@ Gerald Zabulon @@oth@@ Fredy Barneche @@oth@@ Chris Bowler @@oth@@ Maria A. Koini @@oth@@ Mickaël Bourge @@oth@@ Spencer C. Brown @@oth@@ Imen Mestiri @@oth@@ Fabio Formiggini @@oth@@ Paul Fransz @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129505269 |
dewey-sort |
3500 |
id |
OLC1970269324 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970269324</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714175915.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1503512112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970269324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970269324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2226-1831b8674e1270256c27b2c60921022c1a5d288a070cda10f2daeb5d85e55393</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920150000112002102836lightsignalingcontrolsnucleararchitecturereorganiz</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Clara Bourbousse</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Light signaling controls nuclear architecture reorganization during seedling establishment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Nucleus - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis - growth & development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Nucleus - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA Polymerase II - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seedlings - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterochromatin - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light Signal Transduction - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chromatin Assembly and Disassembly - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Nucleus - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis Proteins - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ubiquitin-Protein Ligases - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chromatin Assembly and Disassembly - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear Proteins - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seedlings - growth & development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cotyledon - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cotyledon - growth & development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cotyledon - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterochromatin - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ubiquitin-Protein Ligases - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seedlings - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Germination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chromatin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribonucleic acid--RNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal transduction</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gerald Zabulon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fredy Barneche</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chris Bowler</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria A. Koini</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mickaël Bourge</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Spencer C. Brown</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Imen Mestiri</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabio Formiggini</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paul Fransz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">112(2015), 21, Seite E2836</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:21</subfield><subfield code="g">pages:E2836</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1503512112</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pnas.org/content/112/21/E2836.abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25964332</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1686815648</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2015</subfield><subfield code="e">21</subfield><subfield code="h">E2836</subfield></datafield></record></collection>
|
author |
Clara Bourbousse |
spellingShingle |
Clara Bourbousse ddc 500 ddc 570 fid LING fid BIODIV misc Nuclear Proteins - metabolism misc Cell Nucleus - radiation effects misc Arabidopsis - growth & development misc Cell Nucleus - genetics misc RNA Polymerase II - metabolism misc Seedlings - radiation effects misc Arabidopsis - genetics misc Heterochromatin - radiation effects misc Arabidopsis Proteins - metabolism misc Light Signal Transduction - genetics misc Chromatin Assembly and Disassembly - radiation effects misc Cell Nucleus - metabolism misc Arabidopsis Proteins - genetics misc Ubiquitin-Protein Ligases - metabolism misc Chromatin Assembly and Disassembly - genetics misc Nuclear Proteins - genetics misc Seedlings - growth & development misc Cotyledon - radiation effects misc Cotyledon - growth & development misc Arabidopsis - radiation effects misc Cotyledon - metabolism misc Heterochromatin - genetics misc Ubiquitin-Protein Ligases - genetics misc Seedlings - metabolism misc Germination misc Chromatin misc Photosynthesis misc DNA methylation misc Ribonucleic acid--RNA misc Light misc Signal transduction Light signaling controls nuclear architecture reorganization during seedling establishment |
authorStr |
Clara Bourbousse |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129505269 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0027-8424 |
topic_title |
500 DNB 570 AVZ LING fid BIODIV fid Light signaling controls nuclear architecture reorganization during seedling establishment Nuclear Proteins - metabolism Cell Nucleus - radiation effects Arabidopsis - growth & development Cell Nucleus - genetics RNA Polymerase II - metabolism Seedlings - radiation effects Arabidopsis - genetics Heterochromatin - radiation effects Arabidopsis Proteins - metabolism Light Signal Transduction - genetics Chromatin Assembly and Disassembly - radiation effects Cell Nucleus - metabolism Arabidopsis Proteins - genetics Ubiquitin-Protein Ligases - metabolism Chromatin Assembly and Disassembly - genetics Nuclear Proteins - genetics Seedlings - growth & development Cotyledon - radiation effects Cotyledon - growth & development Arabidopsis - radiation effects Cotyledon - metabolism Heterochromatin - genetics Ubiquitin-Protein Ligases - genetics Seedlings - metabolism Germination Chromatin Photosynthesis DNA methylation Ribonucleic acid--RNA Light Signal transduction |
topic |
ddc 500 ddc 570 fid LING fid BIODIV misc Nuclear Proteins - metabolism misc Cell Nucleus - radiation effects misc Arabidopsis - growth & development misc Cell Nucleus - genetics misc RNA Polymerase II - metabolism misc Seedlings - radiation effects misc Arabidopsis - genetics misc Heterochromatin - radiation effects misc Arabidopsis Proteins - metabolism misc Light Signal Transduction - genetics misc Chromatin Assembly and Disassembly - radiation effects misc Cell Nucleus - metabolism misc Arabidopsis Proteins - genetics misc Ubiquitin-Protein Ligases - metabolism misc Chromatin Assembly and Disassembly - genetics misc Nuclear Proteins - genetics misc Seedlings - growth & development misc Cotyledon - radiation effects misc Cotyledon - growth & development misc Arabidopsis - radiation effects misc Cotyledon - metabolism misc Heterochromatin - genetics misc Ubiquitin-Protein Ligases - genetics misc Seedlings - metabolism misc Germination misc Chromatin misc Photosynthesis misc DNA methylation misc Ribonucleic acid--RNA misc Light misc Signal transduction |
topic_unstemmed |
ddc 500 ddc 570 fid LING fid BIODIV misc Nuclear Proteins - metabolism misc Cell Nucleus - radiation effects misc Arabidopsis - growth & development misc Cell Nucleus - genetics misc RNA Polymerase II - metabolism misc Seedlings - radiation effects misc Arabidopsis - genetics misc Heterochromatin - radiation effects misc Arabidopsis Proteins - metabolism misc Light Signal Transduction - genetics misc Chromatin Assembly and Disassembly - radiation effects misc Cell Nucleus - metabolism misc Arabidopsis Proteins - genetics misc Ubiquitin-Protein Ligases - metabolism misc Chromatin Assembly and Disassembly - genetics misc Nuclear Proteins - genetics misc Seedlings - growth & development misc Cotyledon - radiation effects misc Cotyledon - growth & development misc Arabidopsis - radiation effects misc Cotyledon - metabolism misc Heterochromatin - genetics misc Ubiquitin-Protein Ligases - genetics misc Seedlings - metabolism misc Germination misc Chromatin misc Photosynthesis misc DNA methylation misc Ribonucleic acid--RNA misc Light misc Signal transduction |
topic_browse |
ddc 500 ddc 570 fid LING fid BIODIV misc Nuclear Proteins - metabolism misc Cell Nucleus - radiation effects misc Arabidopsis - growth & development misc Cell Nucleus - genetics misc RNA Polymerase II - metabolism misc Seedlings - radiation effects misc Arabidopsis - genetics misc Heterochromatin - radiation effects misc Arabidopsis Proteins - metabolism misc Light Signal Transduction - genetics misc Chromatin Assembly and Disassembly - radiation effects misc Cell Nucleus - metabolism misc Arabidopsis Proteins - genetics misc Ubiquitin-Protein Ligases - metabolism misc Chromatin Assembly and Disassembly - genetics misc Nuclear Proteins - genetics misc Seedlings - growth & development misc Cotyledon - radiation effects misc Cotyledon - growth & development misc Arabidopsis - radiation effects misc Cotyledon - metabolism misc Heterochromatin - genetics misc Ubiquitin-Protein Ligases - genetics misc Seedlings - metabolism misc Germination misc Chromatin misc Photosynthesis misc DNA methylation misc Ribonucleic acid--RNA misc Light misc Signal transduction |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
g z gz f b fb c b cb m a k mak m b mb s c b scb i m im f f ff p f pf |
hierarchy_parent_title |
Proceedings of the National Academy of Sciences of the United States of America |
hierarchy_parent_id |
129505269 |
dewey-tens |
500 - Science 570 - Life sciences; biology |
hierarchy_top_title |
Proceedings of the National Academy of Sciences of the United States of America |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 |
title |
Light signaling controls nuclear architecture reorganization during seedling establishment |
ctrlnum |
(DE-627)OLC1970269324 (DE-599)GBVOLC1970269324 (PRQ)c2226-1831b8674e1270256c27b2c60921022c1a5d288a070cda10f2daeb5d85e55393 (KEY)0583363920150000112002102836lightsignalingcontrolsnucleararchitecturereorganiz |
title_full |
Light signaling controls nuclear architecture reorganization during seedling establishment |
author_sort |
Clara Bourbousse |
journal |
Proceedings of the National Academy of Sciences of the United States of America |
journalStr |
Proceedings of the National Academy of Sciences of the United States of America |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Clara Bourbousse |
container_volume |
112 |
class |
500 DNB 570 AVZ LING fid BIODIV fid |
format_se |
Aufsätze |
author-letter |
Clara Bourbousse |
doi_str_mv |
10.1073/pnas.1503512112 |
dewey-full |
500 570 |
title_sort |
light signaling controls nuclear architecture reorganization during seedling establishment |
title_auth |
Light signaling controls nuclear architecture reorganization during seedling establishment |
abstract |
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. |
abstractGer |
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. |
abstract_unstemmed |
The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 |
container_issue |
21 |
title_short |
Light signaling controls nuclear architecture reorganization during seedling establishment |
url |
http://dx.doi.org/10.1073/pnas.1503512112 http://www.pnas.org/content/112/21/E2836.abstract http://www.ncbi.nlm.nih.gov/pubmed/25964332 http://search.proquest.com/docview/1686815648 |
remote_bool |
false |
author2 |
Gerald Zabulon Fredy Barneche Chris Bowler Maria A. Koini Mickaël Bourge Spencer C. Brown Imen Mestiri Fabio Formiggini Paul Fransz |
author2Str |
Gerald Zabulon Fredy Barneche Chris Bowler Maria A. Koini Mickaël Bourge Spencer C. Brown Imen Mestiri Fabio Formiggini Paul Fransz |
ppnlink |
129505269 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1073/pnas.1503512112 |
up_date |
2024-07-03T14:33:29.561Z |
_version_ |
1803568765534732288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970269324</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714175915.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1503512112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970269324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970269324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2226-1831b8674e1270256c27b2c60921022c1a5d288a070cda10f2daeb5d85e55393</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920150000112002102836lightsignalingcontrolsnucleararchitecturereorganiz</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Clara Bourbousse</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Light signaling controls nuclear architecture reorganization during seedling establishment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The spatial organization of chromatin can be subject to extensive remodeling in plant somatic cells in response to developmental and environmental signals. However, the mechanisms controlling these dynamic changes and their functional impact on nuclear activity are poorly understood. Here, we determined that light perception triggers a switch between two different nuclear architectural schemes during Arabidopsis postembryonic development. Whereas progressive nucleus expansion and heterochromatin rearrangements in cotyledon cells are achieved similarly under light and dark conditions during germination, the later steps that lead to mature nuclear phenotypes are intimately associated with the photomorphogenic transition in an organ-specific manner. The light signaling integrators DE-ETIOLATED 1 and CONSTITUTIVE PHOTOMORPHOGENIC 1 maintain heterochromatin in a decondensed state in etiolated cotyledons. In contrast, under light conditions cryptochrome-mediated photoperception releases nuclear expansion and heterochromatin compaction within conspicuous chromocenters. For all tested loci, chromatin condensation during photomorphogenesis does not detectably rely on DNA methylation-based processes. Notwithstanding, the efficiency of transcriptional gene silencing may be impacted during the transition, as based on the reactivation of transposable element-driven reporter genes. Finally, we report that global engagement of RNA polymerase II in transcription is highly increased under light conditions, suggesting that cotyledon photomorphogenesis involves a transition from globally quiescent to more active transcriptional states. Given these findings, we propose that light-triggered changes in nuclear architecture underlie interplays between heterochromatin reorganization and transcriptional reprogramming associated with the establishment of photosynthesis.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Nucleus - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis - growth & development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Nucleus - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA Polymerase II - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seedlings - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterochromatin - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis Proteins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light Signal Transduction - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chromatin Assembly and Disassembly - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Nucleus - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis Proteins - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ubiquitin-Protein Ligases - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chromatin Assembly and Disassembly - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear Proteins - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seedlings - growth & development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cotyledon - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cotyledon - growth & development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arabidopsis - radiation effects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cotyledon - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterochromatin - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ubiquitin-Protein Ligases - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Seedlings - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Germination</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chromatin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosynthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribonucleic acid--RNA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal transduction</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Gerald Zabulon</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fredy Barneche</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Chris Bowler</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Maria A. Koini</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mickaël Bourge</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Spencer C. Brown</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Imen Mestiri</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Fabio Formiggini</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Paul Fransz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">112(2015), 21, Seite E2836</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:21</subfield><subfield code="g">pages:E2836</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1503512112</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pnas.org/content/112/21/E2836.abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/25964332</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1686815648</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2015</subfield><subfield code="e">21</subfield><subfield code="h">E2836</subfield></datafield></record></collection>
|
score |
7.4007463 |