Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones
Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at t...
Ausführliche Beschreibung
Autor*in: |
Olivier Thoumine [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Rechteinformationen: |
Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Proceedings of the National Academy of Sciences of the United States of America - Washington, DC : NAS, 1877, 112(2015), 22, Seite 6997 |
---|---|
Übergeordnetes Werk: |
volume:112 ; year:2015 ; number:22 ; pages:6997 |
Links: |
---|
DOI / URN: |
10.1073/pnas.1423455112 |
---|
Katalog-ID: |
OLC197027154X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC197027154X | ||
003 | DE-627 | ||
005 | 20230714175920.0 | ||
007 | tu | ||
008 | 160211s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1073/pnas.1423455112 |2 doi | |
028 | 5 | 2 | |a PQ20160211 |
035 | |a (DE-627)OLC197027154X | ||
035 | |a (DE-599)GBVOLC197027154X | ||
035 | |a (PRQ)g2105-333a44e1f1887f564c02cd015e2280779ccc878b5270fc9cd6ad279b4f954b953 | ||
035 | |a (KEY)0583363920150000112002206997twotieredcouplingbetweenflowingactinandimmobilized | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q DNB |
082 | 0 | 4 | |a 570 |q AVZ |
084 | |a LING |2 fid | ||
084 | |a BIODIV |2 fid | ||
100 | 0 | |a Olivier Thoumine |e verfasserin |4 aut | |
245 | 1 | 0 | |a Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. | ||
540 | |a Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences | ||
650 | 4 | |a DNA Primers - genetics | |
650 | 4 | |a Catenins - metabolism | |
650 | 4 | |a Growth Cones - metabolism | |
650 | 4 | |a Cell Movement - physiology | |
650 | 4 | |a Multiprotein Complexes - metabolism | |
650 | 4 | |a Hippocampus - cytology | |
650 | 4 | |a Actins - metabolism | |
650 | 4 | |a Embryo, Mammalian - cytology | |
650 | 4 | |a Cadherins - metabolism | |
650 | 4 | |a Protein-protein interactions | |
650 | 4 | |a Observations | |
650 | 4 | |a Actin | |
650 | 4 | |a Cadherins | |
650 | 4 | |a Neural circuitry | |
650 | 4 | |a Physiological aspects | |
650 | 4 | |a Substrates | |
650 | 4 | |a Cytoskeleton | |
650 | 4 | |a Proteins | |
650 | 4 | |a Fluorescence | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Kinetics | |
700 | 0 | |a Matthieu Lagardère |4 oth | |
700 | 0 | |a Mikael Garcia |4 oth | |
700 | 0 | |a Amélie Argento |4 oth | |
700 | 0 | |a Cécile Leduc |4 oth | |
700 | 0 | |a Jean-Baptiste Sibarita |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Proceedings of the National Academy of Sciences of the United States of America |d Washington, DC : NAS, 1877 |g 112(2015), 22, Seite 6997 |w (DE-627)129505269 |w (DE-600)209104-5 |w (DE-576)014909189 |x 0027-8424 |7 nnns |
773 | 1 | 8 | |g volume:112 |g year:2015 |g number:22 |g pages:6997 |
856 | 4 | 1 | |u http://dx.doi.org/10.1073/pnas.1423455112 |3 Volltext |
856 | 4 | 2 | |u http://www.pnas.org/content/112/22/6997.abstract |
856 | 4 | 2 | |u http://www.ncbi.nlm.nih.gov/pubmed/26038554 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1688663658 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-LING | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-FOR | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_59 | ||
951 | |a AR | ||
952 | |d 112 |j 2015 |e 22 |h 6997 |
author_variant |
o t ot |
---|---|
matchkey_str |
article:00278424:2015----::wteeculnbtenlwnatnnimblzdcdeictnnope |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1073/pnas.1423455112 doi PQ20160211 (DE-627)OLC197027154X (DE-599)GBVOLC197027154X (PRQ)g2105-333a44e1f1887f564c02cd015e2280779ccc878b5270fc9cd6ad279b4f954b953 (KEY)0583363920150000112002206997twotieredcouplingbetweenflowingactinandimmobilized DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Olivier Thoumine verfasserin aut Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences DNA Primers - genetics Catenins - metabolism Growth Cones - metabolism Cell Movement - physiology Multiprotein Complexes - metabolism Hippocampus - cytology Actins - metabolism Embryo, Mammalian - cytology Cadherins - metabolism Protein-protein interactions Observations Actin Cadherins Neural circuitry Physiological aspects Substrates Cytoskeleton Proteins Fluorescence Computer simulation Kinetics Matthieu Lagardère oth Mikael Garcia oth Amélie Argento oth Cécile Leduc oth Jean-Baptiste Sibarita oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 22, Seite 6997 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:22 pages:6997 http://dx.doi.org/10.1073/pnas.1423455112 Volltext http://www.pnas.org/content/112/22/6997.abstract http://www.ncbi.nlm.nih.gov/pubmed/26038554 http://search.proquest.com/docview/1688663658 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 22 6997 |
spelling |
10.1073/pnas.1423455112 doi PQ20160211 (DE-627)OLC197027154X (DE-599)GBVOLC197027154X (PRQ)g2105-333a44e1f1887f564c02cd015e2280779ccc878b5270fc9cd6ad279b4f954b953 (KEY)0583363920150000112002206997twotieredcouplingbetweenflowingactinandimmobilized DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Olivier Thoumine verfasserin aut Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences DNA Primers - genetics Catenins - metabolism Growth Cones - metabolism Cell Movement - physiology Multiprotein Complexes - metabolism Hippocampus - cytology Actins - metabolism Embryo, Mammalian - cytology Cadherins - metabolism Protein-protein interactions Observations Actin Cadherins Neural circuitry Physiological aspects Substrates Cytoskeleton Proteins Fluorescence Computer simulation Kinetics Matthieu Lagardère oth Mikael Garcia oth Amélie Argento oth Cécile Leduc oth Jean-Baptiste Sibarita oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 22, Seite 6997 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:22 pages:6997 http://dx.doi.org/10.1073/pnas.1423455112 Volltext http://www.pnas.org/content/112/22/6997.abstract http://www.ncbi.nlm.nih.gov/pubmed/26038554 http://search.proquest.com/docview/1688663658 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 22 6997 |
allfields_unstemmed |
10.1073/pnas.1423455112 doi PQ20160211 (DE-627)OLC197027154X (DE-599)GBVOLC197027154X (PRQ)g2105-333a44e1f1887f564c02cd015e2280779ccc878b5270fc9cd6ad279b4f954b953 (KEY)0583363920150000112002206997twotieredcouplingbetweenflowingactinandimmobilized DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Olivier Thoumine verfasserin aut Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences DNA Primers - genetics Catenins - metabolism Growth Cones - metabolism Cell Movement - physiology Multiprotein Complexes - metabolism Hippocampus - cytology Actins - metabolism Embryo, Mammalian - cytology Cadherins - metabolism Protein-protein interactions Observations Actin Cadherins Neural circuitry Physiological aspects Substrates Cytoskeleton Proteins Fluorescence Computer simulation Kinetics Matthieu Lagardère oth Mikael Garcia oth Amélie Argento oth Cécile Leduc oth Jean-Baptiste Sibarita oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 22, Seite 6997 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:22 pages:6997 http://dx.doi.org/10.1073/pnas.1423455112 Volltext http://www.pnas.org/content/112/22/6997.abstract http://www.ncbi.nlm.nih.gov/pubmed/26038554 http://search.proquest.com/docview/1688663658 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 22 6997 |
allfieldsGer |
10.1073/pnas.1423455112 doi PQ20160211 (DE-627)OLC197027154X (DE-599)GBVOLC197027154X (PRQ)g2105-333a44e1f1887f564c02cd015e2280779ccc878b5270fc9cd6ad279b4f954b953 (KEY)0583363920150000112002206997twotieredcouplingbetweenflowingactinandimmobilized DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Olivier Thoumine verfasserin aut Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences DNA Primers - genetics Catenins - metabolism Growth Cones - metabolism Cell Movement - physiology Multiprotein Complexes - metabolism Hippocampus - cytology Actins - metabolism Embryo, Mammalian - cytology Cadherins - metabolism Protein-protein interactions Observations Actin Cadherins Neural circuitry Physiological aspects Substrates Cytoskeleton Proteins Fluorescence Computer simulation Kinetics Matthieu Lagardère oth Mikael Garcia oth Amélie Argento oth Cécile Leduc oth Jean-Baptiste Sibarita oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 22, Seite 6997 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:22 pages:6997 http://dx.doi.org/10.1073/pnas.1423455112 Volltext http://www.pnas.org/content/112/22/6997.abstract http://www.ncbi.nlm.nih.gov/pubmed/26038554 http://search.proquest.com/docview/1688663658 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 22 6997 |
allfieldsSound |
10.1073/pnas.1423455112 doi PQ20160211 (DE-627)OLC197027154X (DE-599)GBVOLC197027154X (PRQ)g2105-333a44e1f1887f564c02cd015e2280779ccc878b5270fc9cd6ad279b4f954b953 (KEY)0583363920150000112002206997twotieredcouplingbetweenflowingactinandimmobilized DE-627 ger DE-627 rakwb eng 500 DNB 570 AVZ LING fid BIODIV fid Olivier Thoumine verfasserin aut Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences DNA Primers - genetics Catenins - metabolism Growth Cones - metabolism Cell Movement - physiology Multiprotein Complexes - metabolism Hippocampus - cytology Actins - metabolism Embryo, Mammalian - cytology Cadherins - metabolism Protein-protein interactions Observations Actin Cadherins Neural circuitry Physiological aspects Substrates Cytoskeleton Proteins Fluorescence Computer simulation Kinetics Matthieu Lagardère oth Mikael Garcia oth Amélie Argento oth Cécile Leduc oth Jean-Baptiste Sibarita oth Enthalten in Proceedings of the National Academy of Sciences of the United States of America Washington, DC : NAS, 1877 112(2015), 22, Seite 6997 (DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 0027-8424 nnns volume:112 year:2015 number:22 pages:6997 http://dx.doi.org/10.1073/pnas.1423455112 Volltext http://www.pnas.org/content/112/22/6997.abstract http://www.ncbi.nlm.nih.gov/pubmed/26038554 http://search.proquest.com/docview/1688663658 GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 AR 112 2015 22 6997 |
language |
English |
source |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 112(2015), 22, Seite 6997 volume:112 year:2015 number:22 pages:6997 |
sourceStr |
Enthalten in Proceedings of the National Academy of Sciences of the United States of America 112(2015), 22, Seite 6997 volume:112 year:2015 number:22 pages:6997 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DNA Primers - genetics Catenins - metabolism Growth Cones - metabolism Cell Movement - physiology Multiprotein Complexes - metabolism Hippocampus - cytology Actins - metabolism Embryo, Mammalian - cytology Cadherins - metabolism Protein-protein interactions Observations Actin Cadherins Neural circuitry Physiological aspects Substrates Cytoskeleton Proteins Fluorescence Computer simulation Kinetics |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Proceedings of the National Academy of Sciences of the United States of America |
authorswithroles_txt_mv |
Olivier Thoumine @@aut@@ Matthieu Lagardère @@oth@@ Mikael Garcia @@oth@@ Amélie Argento @@oth@@ Cécile Leduc @@oth@@ Jean-Baptiste Sibarita @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
129505269 |
dewey-sort |
3500 |
id |
OLC197027154X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197027154X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714175920.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1423455112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197027154X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197027154X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g2105-333a44e1f1887f564c02cd015e2280779ccc878b5270fc9cd6ad279b4f954b953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920150000112002206997twotieredcouplingbetweenflowingactinandimmobilized</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Olivier Thoumine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA Primers - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catenins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Growth Cones - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Movement - physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiprotein Complexes - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hippocampus - cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embryo, Mammalian - cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cadherins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein-protein interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cadherins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural circuitry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physiological aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cytoskeleton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthieu Lagardère</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mikael Garcia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amélie Argento</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cécile Leduc</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jean-Baptiste Sibarita</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">112(2015), 22, Seite 6997</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:22</subfield><subfield code="g">pages:6997</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1423455112</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pnas.org/content/112/22/6997.abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26038554</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1688663658</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2015</subfield><subfield code="e">22</subfield><subfield code="h">6997</subfield></datafield></record></collection>
|
author |
Olivier Thoumine |
spellingShingle |
Olivier Thoumine ddc 500 ddc 570 fid LING fid BIODIV misc DNA Primers - genetics misc Catenins - metabolism misc Growth Cones - metabolism misc Cell Movement - physiology misc Multiprotein Complexes - metabolism misc Hippocampus - cytology misc Actins - metabolism misc Embryo, Mammalian - cytology misc Cadherins - metabolism misc Protein-protein interactions misc Observations misc Actin misc Cadherins misc Neural circuitry misc Physiological aspects misc Substrates misc Cytoskeleton misc Proteins misc Fluorescence misc Computer simulation misc Kinetics Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones |
authorStr |
Olivier Thoumine |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129505269 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0027-8424 |
topic_title |
500 DNB 570 AVZ LING fid BIODIV fid Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones DNA Primers - genetics Catenins - metabolism Growth Cones - metabolism Cell Movement - physiology Multiprotein Complexes - metabolism Hippocampus - cytology Actins - metabolism Embryo, Mammalian - cytology Cadherins - metabolism Protein-protein interactions Observations Actin Cadherins Neural circuitry Physiological aspects Substrates Cytoskeleton Proteins Fluorescence Computer simulation Kinetics |
topic |
ddc 500 ddc 570 fid LING fid BIODIV misc DNA Primers - genetics misc Catenins - metabolism misc Growth Cones - metabolism misc Cell Movement - physiology misc Multiprotein Complexes - metabolism misc Hippocampus - cytology misc Actins - metabolism misc Embryo, Mammalian - cytology misc Cadherins - metabolism misc Protein-protein interactions misc Observations misc Actin misc Cadherins misc Neural circuitry misc Physiological aspects misc Substrates misc Cytoskeleton misc Proteins misc Fluorescence misc Computer simulation misc Kinetics |
topic_unstemmed |
ddc 500 ddc 570 fid LING fid BIODIV misc DNA Primers - genetics misc Catenins - metabolism misc Growth Cones - metabolism misc Cell Movement - physiology misc Multiprotein Complexes - metabolism misc Hippocampus - cytology misc Actins - metabolism misc Embryo, Mammalian - cytology misc Cadherins - metabolism misc Protein-protein interactions misc Observations misc Actin misc Cadherins misc Neural circuitry misc Physiological aspects misc Substrates misc Cytoskeleton misc Proteins misc Fluorescence misc Computer simulation misc Kinetics |
topic_browse |
ddc 500 ddc 570 fid LING fid BIODIV misc DNA Primers - genetics misc Catenins - metabolism misc Growth Cones - metabolism misc Cell Movement - physiology misc Multiprotein Complexes - metabolism misc Hippocampus - cytology misc Actins - metabolism misc Embryo, Mammalian - cytology misc Cadherins - metabolism misc Protein-protein interactions misc Observations misc Actin misc Cadherins misc Neural circuitry misc Physiological aspects misc Substrates misc Cytoskeleton misc Proteins misc Fluorescence misc Computer simulation misc Kinetics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m l ml m g mg a a aa c l cl j b s jbs |
hierarchy_parent_title |
Proceedings of the National Academy of Sciences of the United States of America |
hierarchy_parent_id |
129505269 |
dewey-tens |
500 - Science 570 - Life sciences; biology |
hierarchy_top_title |
Proceedings of the National Academy of Sciences of the United States of America |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129505269 (DE-600)209104-5 (DE-576)014909189 |
title |
Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones |
ctrlnum |
(DE-627)OLC197027154X (DE-599)GBVOLC197027154X (PRQ)g2105-333a44e1f1887f564c02cd015e2280779ccc878b5270fc9cd6ad279b4f954b953 (KEY)0583363920150000112002206997twotieredcouplingbetweenflowingactinandimmobilized |
title_full |
Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones |
author_sort |
Olivier Thoumine |
journal |
Proceedings of the National Academy of Sciences of the United States of America |
journalStr |
Proceedings of the National Academy of Sciences of the United States of America |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
6997 |
author_browse |
Olivier Thoumine |
container_volume |
112 |
class |
500 DNB 570 AVZ LING fid BIODIV fid |
format_se |
Aufsätze |
author-letter |
Olivier Thoumine |
doi_str_mv |
10.1073/pnas.1423455112 |
dewey-full |
500 570 |
title_sort |
two-tiered coupling between flowing actin and immobilized n-cadherin/catenin complexes in neuronal growth cones |
title_auth |
Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones |
abstract |
Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. |
abstractGer |
Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. |
abstract_unstemmed |
Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-LING FID-BIODIV SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-FOR SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT SSG-OPC-FOR GBV_ILN_40 GBV_ILN_59 |
container_issue |
22 |
title_short |
Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones |
url |
http://dx.doi.org/10.1073/pnas.1423455112 http://www.pnas.org/content/112/22/6997.abstract http://www.ncbi.nlm.nih.gov/pubmed/26038554 http://search.proquest.com/docview/1688663658 |
remote_bool |
false |
author2 |
Matthieu Lagardère Mikael Garcia Amélie Argento Cécile Leduc Jean-Baptiste Sibarita |
author2Str |
Matthieu Lagardère Mikael Garcia Amélie Argento Cécile Leduc Jean-Baptiste Sibarita |
ppnlink |
129505269 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1073/pnas.1423455112 |
up_date |
2024-07-03T14:34:16.790Z |
_version_ |
1803568815064219648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197027154X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714175920.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1073/pnas.1423455112</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197027154X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197027154X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)g2105-333a44e1f1887f564c02cd015e2280779ccc878b5270fc9cd6ad279b4f954b953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0583363920150000112002206997twotieredcouplingbetweenflowingactinandimmobilized</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LING</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Olivier Thoumine</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Two-tiered coupling between flowing actin and immobilized N-cadherin/catenin complexes in neuronal growth cones</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Neuronal growth cones move forward by dynamically connecting actin-based motility to substrate adhesion, but the mechanisms at the individual molecular level remain unclear. We cultured primary neurons on N-cadherin-coated micropatterned substrates, and imaged adhesion and cytoskeletal proteins at the ventral surface of growth cones using single particle tracking combined to photoactivated localization microscopy (sptPALM). We demonstrate transient interactions in the second time scale between flowing actin filaments and immobilized N-cadherin/catenin complexes, translating into a local reduction of the actin retrograde flow. Normal actin flow on micropatterns was rescued by expression of a dominant negative N-cadherin construct competing for the coupling between actin and endogenous N-cadherin. Fluorescence recovery after photobleaching (FRAP) experiments confirmed the differential kinetics of actin and N-cadherin, and further revealed a 20% actin population confined at N-cadherin micropatterns, contributing to local actin accumulation. Computer simulations with relevant kinetic parameters modeled N-cadherin and actin turnover well, validating this mechanism. Such a combination of short- and long-lived interactions between the motile actin network and spatially restricted adhesive complexes represents a two-tiered clutch mechanism likely to sustain dynamic environment sensing and provide the force necessary for growth cone migration.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © COPYRIGHT 2015 National Academy of Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA Primers - genetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catenins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Growth Cones - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Movement - physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiprotein Complexes - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hippocampus - cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Embryo, Mammalian - cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cadherins - metabolism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein-protein interactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Observations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cadherins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural circuitry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physiological aspects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Substrates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cytoskeleton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Matthieu Lagardère</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Mikael Garcia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Amélie Argento</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Cécile Leduc</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jean-Baptiste Sibarita</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Proceedings of the National Academy of Sciences of the United States of America</subfield><subfield code="d">Washington, DC : NAS, 1877</subfield><subfield code="g">112(2015), 22, Seite 6997</subfield><subfield code="w">(DE-627)129505269</subfield><subfield code="w">(DE-600)209104-5</subfield><subfield code="w">(DE-576)014909189</subfield><subfield code="x">0027-8424</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:112</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:22</subfield><subfield code="g">pages:6997</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1073/pnas.1423455112</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.pnas.org/content/112/22/6997.abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.ncbi.nlm.nih.gov/pubmed/26038554</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1688663658</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-LING</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">112</subfield><subfield code="j">2015</subfield><subfield code="e">22</subfield><subfield code="h">6997</subfield></datafield></record></collection>
|
score |
7.401681 |