The Formalization of Discrete Fourier Transform in HOL
Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with complet...
Ausführliche Beschreibung
Autor*in: |
Yupeng Zhang [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
Partial differential equations |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematical problems in engineering - New York, NY : Hindawi, 1995, 2015(2015) |
---|---|
Übergeordnetes Werk: |
volume:2015 ; year:2015 |
Links: |
---|
DOI / URN: |
10.1155/2015/687152 |
---|
Katalog-ID: |
OLC1970298839 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1970298839 | ||
003 | DE-627 | ||
005 | 20230714180032.0 | ||
007 | tu | ||
008 | 160211s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1155/2015/687152 |2 doi | |
028 | 5 | 2 | |a PQ20160211 |
035 | |a (DE-627)OLC1970298839 | ||
035 | |a (DE-599)GBVOLC1970298839 | ||
035 | |a (PRQ)d2361-f56de83f9ecaded3194bfb5c6112a44eb47e7b9b2606557dfe75973d53e02b633 | ||
035 | |a (KEY)0604837420150000015000000000formalizationofdiscretefouriertransforminhol | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ZDB |
100 | 0 | |a Yupeng Zhang |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Formalization of Discrete Fourier Transform in HOL |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift. | ||
650 | 4 | |a Software | |
650 | 4 | |a Case studies | |
650 | 4 | |a Signal processing | |
650 | 4 | |a Methods | |
650 | 4 | |a Metis | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Partial differential equations | |
650 | 4 | |a Colleges & universities | |
650 | 4 | |a QA1-939 | |
650 | 4 | |a Engineering (General). Civil engineering (General) | |
650 | 4 | |a TA1-2040 | |
650 | 4 | |a Mathematics | |
700 | 0 | |a Yong Guan |4 oth | |
700 | 0 | |a Zhiping Shi |4 oth | |
700 | 0 | |a Liming Li |4 oth | |
700 | 0 | |a Jie Zhang |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Mathematical problems in engineering |d New York, NY : Hindawi, 1995 |g 2015(2015) |w (DE-627)229671004 |w (DE-600)1385243-7 |w (DE-576)9229671002 |x 1024-123X |7 nnns |
773 | 1 | 8 | |g volume:2015 |g year:2015 |
856 | 4 | 1 | |u http://dx.doi.org/10.1155/2015/687152 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1731737705 |
856 | 4 | 2 | |u https://doaj.org/article/2f31237310d946d38a5e514973fb28ce |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 2015 |j 2015 |
author_variant |
y z yz |
---|---|
matchkey_str |
article:1024123X:2015----::hfraiainficeeore |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1155/2015/687152 doi PQ20160211 (DE-627)OLC1970298839 (DE-599)GBVOLC1970298839 (PRQ)d2361-f56de83f9ecaded3194bfb5c6112a44eb47e7b9b2606557dfe75973d53e02b633 (KEY)0604837420150000015000000000formalizationofdiscretefouriertransforminhol DE-627 ger DE-627 rakwb eng 510 ZDB Yupeng Zhang verfasserin aut The Formalization of Discrete Fourier Transform in HOL 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift. Software Case studies Signal processing Methods Metis Algorithms Partial differential equations Colleges & universities QA1-939 Engineering (General). Civil engineering (General) TA1-2040 Mathematics Yong Guan oth Zhiping Shi oth Liming Li oth Jie Zhang oth Enthalten in Mathematical problems in engineering New York, NY : Hindawi, 1995 2015(2015) (DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 1024-123X nnns volume:2015 year:2015 http://dx.doi.org/10.1155/2015/687152 Volltext http://search.proquest.com/docview/1731737705 https://doaj.org/article/2f31237310d946d38a5e514973fb28ce GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 2015 2015 |
spelling |
10.1155/2015/687152 doi PQ20160211 (DE-627)OLC1970298839 (DE-599)GBVOLC1970298839 (PRQ)d2361-f56de83f9ecaded3194bfb5c6112a44eb47e7b9b2606557dfe75973d53e02b633 (KEY)0604837420150000015000000000formalizationofdiscretefouriertransforminhol DE-627 ger DE-627 rakwb eng 510 ZDB Yupeng Zhang verfasserin aut The Formalization of Discrete Fourier Transform in HOL 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift. Software Case studies Signal processing Methods Metis Algorithms Partial differential equations Colleges & universities QA1-939 Engineering (General). Civil engineering (General) TA1-2040 Mathematics Yong Guan oth Zhiping Shi oth Liming Li oth Jie Zhang oth Enthalten in Mathematical problems in engineering New York, NY : Hindawi, 1995 2015(2015) (DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 1024-123X nnns volume:2015 year:2015 http://dx.doi.org/10.1155/2015/687152 Volltext http://search.proquest.com/docview/1731737705 https://doaj.org/article/2f31237310d946d38a5e514973fb28ce GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 2015 2015 |
allfields_unstemmed |
10.1155/2015/687152 doi PQ20160211 (DE-627)OLC1970298839 (DE-599)GBVOLC1970298839 (PRQ)d2361-f56de83f9ecaded3194bfb5c6112a44eb47e7b9b2606557dfe75973d53e02b633 (KEY)0604837420150000015000000000formalizationofdiscretefouriertransforminhol DE-627 ger DE-627 rakwb eng 510 ZDB Yupeng Zhang verfasserin aut The Formalization of Discrete Fourier Transform in HOL 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift. Software Case studies Signal processing Methods Metis Algorithms Partial differential equations Colleges & universities QA1-939 Engineering (General). Civil engineering (General) TA1-2040 Mathematics Yong Guan oth Zhiping Shi oth Liming Li oth Jie Zhang oth Enthalten in Mathematical problems in engineering New York, NY : Hindawi, 1995 2015(2015) (DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 1024-123X nnns volume:2015 year:2015 http://dx.doi.org/10.1155/2015/687152 Volltext http://search.proquest.com/docview/1731737705 https://doaj.org/article/2f31237310d946d38a5e514973fb28ce GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 2015 2015 |
allfieldsGer |
10.1155/2015/687152 doi PQ20160211 (DE-627)OLC1970298839 (DE-599)GBVOLC1970298839 (PRQ)d2361-f56de83f9ecaded3194bfb5c6112a44eb47e7b9b2606557dfe75973d53e02b633 (KEY)0604837420150000015000000000formalizationofdiscretefouriertransforminhol DE-627 ger DE-627 rakwb eng 510 ZDB Yupeng Zhang verfasserin aut The Formalization of Discrete Fourier Transform in HOL 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift. Software Case studies Signal processing Methods Metis Algorithms Partial differential equations Colleges & universities QA1-939 Engineering (General). Civil engineering (General) TA1-2040 Mathematics Yong Guan oth Zhiping Shi oth Liming Li oth Jie Zhang oth Enthalten in Mathematical problems in engineering New York, NY : Hindawi, 1995 2015(2015) (DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 1024-123X nnns volume:2015 year:2015 http://dx.doi.org/10.1155/2015/687152 Volltext http://search.proquest.com/docview/1731737705 https://doaj.org/article/2f31237310d946d38a5e514973fb28ce GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 2015 2015 |
allfieldsSound |
10.1155/2015/687152 doi PQ20160211 (DE-627)OLC1970298839 (DE-599)GBVOLC1970298839 (PRQ)d2361-f56de83f9ecaded3194bfb5c6112a44eb47e7b9b2606557dfe75973d53e02b633 (KEY)0604837420150000015000000000formalizationofdiscretefouriertransforminhol DE-627 ger DE-627 rakwb eng 510 ZDB Yupeng Zhang verfasserin aut The Formalization of Discrete Fourier Transform in HOL 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift. Software Case studies Signal processing Methods Metis Algorithms Partial differential equations Colleges & universities QA1-939 Engineering (General). Civil engineering (General) TA1-2040 Mathematics Yong Guan oth Zhiping Shi oth Liming Li oth Jie Zhang oth Enthalten in Mathematical problems in engineering New York, NY : Hindawi, 1995 2015(2015) (DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 1024-123X nnns volume:2015 year:2015 http://dx.doi.org/10.1155/2015/687152 Volltext http://search.proquest.com/docview/1731737705 https://doaj.org/article/2f31237310d946d38a5e514973fb28ce GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 2015 2015 |
language |
English |
source |
Enthalten in Mathematical problems in engineering 2015(2015) volume:2015 year:2015 |
sourceStr |
Enthalten in Mathematical problems in engineering 2015(2015) volume:2015 year:2015 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Software Case studies Signal processing Methods Metis Algorithms Partial differential equations Colleges & universities QA1-939 Engineering (General). Civil engineering (General) TA1-2040 Mathematics |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematical problems in engineering |
authorswithroles_txt_mv |
Yupeng Zhang @@aut@@ Yong Guan @@oth@@ Zhiping Shi @@oth@@ Liming Li @@oth@@ Jie Zhang @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
229671004 |
dewey-sort |
3510 |
id |
OLC1970298839 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970298839</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714180032.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2015/687152</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970298839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970298839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)d2361-f56de83f9ecaded3194bfb5c6112a44eb47e7b9b2606557dfe75973d53e02b633</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0604837420150000015000000000formalizationofdiscretefouriertransforminhol</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yupeng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Formalization of Discrete Fourier Transform in HOL</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Case studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colleges & universities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QA1-939</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Guan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiping Shi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liming Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Zhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical problems in engineering</subfield><subfield code="d">New York, NY : Hindawi, 1995</subfield><subfield code="g">2015(2015)</subfield><subfield code="w">(DE-627)229671004</subfield><subfield code="w">(DE-600)1385243-7</subfield><subfield code="w">(DE-576)9229671002</subfield><subfield code="x">1024-123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2015</subfield><subfield code="g">year:2015</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1155/2015/687152</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1731737705</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/article/2f31237310d946d38a5e514973fb28ce</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2015</subfield><subfield code="j">2015</subfield></datafield></record></collection>
|
author |
Yupeng Zhang |
spellingShingle |
Yupeng Zhang ddc 510 misc Software misc Case studies misc Signal processing misc Methods misc Metis misc Algorithms misc Partial differential equations misc Colleges & universities misc QA1-939 misc Engineering (General). Civil engineering (General) misc TA1-2040 misc Mathematics The Formalization of Discrete Fourier Transform in HOL |
authorStr |
Yupeng Zhang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)229671004 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1024-123X |
topic_title |
510 ZDB The Formalization of Discrete Fourier Transform in HOL Software Case studies Signal processing Methods Metis Algorithms Partial differential equations Colleges & universities QA1-939 Engineering (General). Civil engineering (General) TA1-2040 Mathematics |
topic |
ddc 510 misc Software misc Case studies misc Signal processing misc Methods misc Metis misc Algorithms misc Partial differential equations misc Colleges & universities misc QA1-939 misc Engineering (General). Civil engineering (General) misc TA1-2040 misc Mathematics |
topic_unstemmed |
ddc 510 misc Software misc Case studies misc Signal processing misc Methods misc Metis misc Algorithms misc Partial differential equations misc Colleges & universities misc QA1-939 misc Engineering (General). Civil engineering (General) misc TA1-2040 misc Mathematics |
topic_browse |
ddc 510 misc Software misc Case studies misc Signal processing misc Methods misc Metis misc Algorithms misc Partial differential equations misc Colleges & universities misc QA1-939 misc Engineering (General). Civil engineering (General) misc TA1-2040 misc Mathematics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
y g yg z s zs l l ll j z jz |
hierarchy_parent_title |
Mathematical problems in engineering |
hierarchy_parent_id |
229671004 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematical problems in engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 |
title |
The Formalization of Discrete Fourier Transform in HOL |
ctrlnum |
(DE-627)OLC1970298839 (DE-599)GBVOLC1970298839 (PRQ)d2361-f56de83f9ecaded3194bfb5c6112a44eb47e7b9b2606557dfe75973d53e02b633 (KEY)0604837420150000015000000000formalizationofdiscretefouriertransforminhol |
title_full |
The Formalization of Discrete Fourier Transform in HOL |
author_sort |
Yupeng Zhang |
journal |
Mathematical problems in engineering |
journalStr |
Mathematical problems in engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Yupeng Zhang |
container_volume |
2015 |
class |
510 ZDB |
format_se |
Aufsätze |
author-letter |
Yupeng Zhang |
doi_str_mv |
10.1155/2015/687152 |
dewey-full |
510 |
title_sort |
formalization of discrete fourier transform in hol |
title_auth |
The Formalization of Discrete Fourier Transform in HOL |
abstract |
Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift. |
abstractGer |
Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift. |
abstract_unstemmed |
Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
title_short |
The Formalization of Discrete Fourier Transform in HOL |
url |
http://dx.doi.org/10.1155/2015/687152 http://search.proquest.com/docview/1731737705 https://doaj.org/article/2f31237310d946d38a5e514973fb28ce |
remote_bool |
false |
author2 |
Yong Guan Zhiping Shi Liming Li Jie Zhang |
author2Str |
Yong Guan Zhiping Shi Liming Li Jie Zhang |
ppnlink |
229671004 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1155/2015/687152 |
up_date |
2024-07-03T14:43:51.193Z |
_version_ |
1803569417364176896 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970298839</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714180032.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2015/687152</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970298839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970298839</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)d2361-f56de83f9ecaded3194bfb5c6112a44eb47e7b9b2606557dfe75973d53e02b633</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0604837420150000015000000000formalizationofdiscretefouriertransforminhol</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Yupeng Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Formalization of Discrete Fourier Transform in HOL</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Traditionally, Discrete Fourier Transform (DFT) is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT) and cosine frequency shift.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Case studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colleges & universities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QA1-939</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Yong Guan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Zhiping Shi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Liming Li</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Jie Zhang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical problems in engineering</subfield><subfield code="d">New York, NY : Hindawi, 1995</subfield><subfield code="g">2015(2015)</subfield><subfield code="w">(DE-627)229671004</subfield><subfield code="w">(DE-600)1385243-7</subfield><subfield code="w">(DE-576)9229671002</subfield><subfield code="x">1024-123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2015</subfield><subfield code="g">year:2015</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1155/2015/687152</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1731737705</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/article/2f31237310d946d38a5e514973fb28ce</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2015</subfield><subfield code="j">2015</subfield></datafield></record></collection>
|
score |
7.401531 |