Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media
The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of t...
Ausführliche Beschreibung
Autor*in: |
Zhi-hong He [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematical problems in engineering - New York, NY : Hindawi, 1995, 2015(2015) |
---|---|
Übergeordnetes Werk: |
volume:2015 ; year:2015 |
Links: |
---|
DOI / URN: |
10.1155/2015/181536 |
---|
Katalog-ID: |
OLC1970301597 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1970301597 | ||
003 | DE-627 | ||
005 | 20230714180038.0 | ||
007 | tu | ||
008 | 160211s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1155/2015/181536 |2 doi | |
028 | 5 | 2 | |a PQ20160211 |
035 | |a (DE-627)OLC1970301597 | ||
035 | |a (DE-599)GBVOLC1970301597 | ||
035 | |a (PRQ)d2351-cc5308ffb4d8276fd154493de5c8eb96a8e6376064187d381c0b6fab179922a53 | ||
035 | |a (KEY)0604837420150000015000000000reproducingkernelparticlemethodforradiativeheattra | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q ZDB |
100 | 0 | |a Zhi-hong He |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media. | ||
650 | 4 | |a Clouds | |
650 | 4 | |a Finite element analysis | |
650 | 4 | |a Aerosols | |
650 | 4 | |a Numerical controls | |
650 | 4 | |a QA1-939 | |
650 | 4 | |a Engineering (General). Civil engineering (General) | |
650 | 4 | |a Science | |
650 | 4 | |a TA1-2040 | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Technology | |
700 | 0 | |a Lei Mu |4 oth | |
700 | 0 | |a Shi-kui Dong |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Mathematical problems in engineering |d New York, NY : Hindawi, 1995 |g 2015(2015) |w (DE-627)229671004 |w (DE-600)1385243-7 |w (DE-576)9229671002 |x 1024-123X |7 nnns |
773 | 1 | 8 | |g volume:2015 |g year:2015 |
856 | 4 | 1 | |u http://dx.doi.org/10.1155/2015/181536 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1674474513 |
856 | 4 | 2 | |u https://doaj.org/article/5e03e6233a1a492a871b3bbae691f34c |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 2015 |j 2015 |
author_variant |
z h h zhh |
---|---|
matchkey_str |
article:1024123X:2015----::erdcnkreprilmtofraitvhatasei |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1155/2015/181536 doi PQ20160211 (DE-627)OLC1970301597 (DE-599)GBVOLC1970301597 (PRQ)d2351-cc5308ffb4d8276fd154493de5c8eb96a8e6376064187d381c0b6fab179922a53 (KEY)0604837420150000015000000000reproducingkernelparticlemethodforradiativeheattra DE-627 ger DE-627 rakwb eng 510 ZDB Zhi-hong He verfasserin aut Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media. Clouds Finite element analysis Aerosols Numerical controls QA1-939 Engineering (General). Civil engineering (General) Science TA1-2040 Mathematics Technology Lei Mu oth Shi-kui Dong oth Enthalten in Mathematical problems in engineering New York, NY : Hindawi, 1995 2015(2015) (DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 1024-123X nnns volume:2015 year:2015 http://dx.doi.org/10.1155/2015/181536 Volltext http://search.proquest.com/docview/1674474513 https://doaj.org/article/5e03e6233a1a492a871b3bbae691f34c GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 2015 2015 |
spelling |
10.1155/2015/181536 doi PQ20160211 (DE-627)OLC1970301597 (DE-599)GBVOLC1970301597 (PRQ)d2351-cc5308ffb4d8276fd154493de5c8eb96a8e6376064187d381c0b6fab179922a53 (KEY)0604837420150000015000000000reproducingkernelparticlemethodforradiativeheattra DE-627 ger DE-627 rakwb eng 510 ZDB Zhi-hong He verfasserin aut Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media. Clouds Finite element analysis Aerosols Numerical controls QA1-939 Engineering (General). Civil engineering (General) Science TA1-2040 Mathematics Technology Lei Mu oth Shi-kui Dong oth Enthalten in Mathematical problems in engineering New York, NY : Hindawi, 1995 2015(2015) (DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 1024-123X nnns volume:2015 year:2015 http://dx.doi.org/10.1155/2015/181536 Volltext http://search.proquest.com/docview/1674474513 https://doaj.org/article/5e03e6233a1a492a871b3bbae691f34c GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 2015 2015 |
allfields_unstemmed |
10.1155/2015/181536 doi PQ20160211 (DE-627)OLC1970301597 (DE-599)GBVOLC1970301597 (PRQ)d2351-cc5308ffb4d8276fd154493de5c8eb96a8e6376064187d381c0b6fab179922a53 (KEY)0604837420150000015000000000reproducingkernelparticlemethodforradiativeheattra DE-627 ger DE-627 rakwb eng 510 ZDB Zhi-hong He verfasserin aut Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media. Clouds Finite element analysis Aerosols Numerical controls QA1-939 Engineering (General). Civil engineering (General) Science TA1-2040 Mathematics Technology Lei Mu oth Shi-kui Dong oth Enthalten in Mathematical problems in engineering New York, NY : Hindawi, 1995 2015(2015) (DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 1024-123X nnns volume:2015 year:2015 http://dx.doi.org/10.1155/2015/181536 Volltext http://search.proquest.com/docview/1674474513 https://doaj.org/article/5e03e6233a1a492a871b3bbae691f34c GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 2015 2015 |
allfieldsGer |
10.1155/2015/181536 doi PQ20160211 (DE-627)OLC1970301597 (DE-599)GBVOLC1970301597 (PRQ)d2351-cc5308ffb4d8276fd154493de5c8eb96a8e6376064187d381c0b6fab179922a53 (KEY)0604837420150000015000000000reproducingkernelparticlemethodforradiativeheattra DE-627 ger DE-627 rakwb eng 510 ZDB Zhi-hong He verfasserin aut Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media. Clouds Finite element analysis Aerosols Numerical controls QA1-939 Engineering (General). Civil engineering (General) Science TA1-2040 Mathematics Technology Lei Mu oth Shi-kui Dong oth Enthalten in Mathematical problems in engineering New York, NY : Hindawi, 1995 2015(2015) (DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 1024-123X nnns volume:2015 year:2015 http://dx.doi.org/10.1155/2015/181536 Volltext http://search.proquest.com/docview/1674474513 https://doaj.org/article/5e03e6233a1a492a871b3bbae691f34c GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 2015 2015 |
allfieldsSound |
10.1155/2015/181536 doi PQ20160211 (DE-627)OLC1970301597 (DE-599)GBVOLC1970301597 (PRQ)d2351-cc5308ffb4d8276fd154493de5c8eb96a8e6376064187d381c0b6fab179922a53 (KEY)0604837420150000015000000000reproducingkernelparticlemethodforradiativeheattra DE-627 ger DE-627 rakwb eng 510 ZDB Zhi-hong He verfasserin aut Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media. Clouds Finite element analysis Aerosols Numerical controls QA1-939 Engineering (General). Civil engineering (General) Science TA1-2040 Mathematics Technology Lei Mu oth Shi-kui Dong oth Enthalten in Mathematical problems in engineering New York, NY : Hindawi, 1995 2015(2015) (DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 1024-123X nnns volume:2015 year:2015 http://dx.doi.org/10.1155/2015/181536 Volltext http://search.proquest.com/docview/1674474513 https://doaj.org/article/5e03e6233a1a492a871b3bbae691f34c GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 AR 2015 2015 |
language |
English |
source |
Enthalten in Mathematical problems in engineering 2015(2015) volume:2015 year:2015 |
sourceStr |
Enthalten in Mathematical problems in engineering 2015(2015) volume:2015 year:2015 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Clouds Finite element analysis Aerosols Numerical controls QA1-939 Engineering (General). Civil engineering (General) Science TA1-2040 Mathematics Technology |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Mathematical problems in engineering |
authorswithroles_txt_mv |
Zhi-hong He @@aut@@ Lei Mu @@oth@@ Shi-kui Dong @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
229671004 |
dewey-sort |
3510 |
id |
OLC1970301597 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970301597</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714180038.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2015/181536</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970301597</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970301597</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)d2351-cc5308ffb4d8276fd154493de5c8eb96a8e6376064187d381c0b6fab179922a53</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0604837420150000015000000000reproducingkernelparticlemethodforradiativeheattra</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhi-hong He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clouds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerosols</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical controls</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QA1-939</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Mu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shi-kui Dong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical problems in engineering</subfield><subfield code="d">New York, NY : Hindawi, 1995</subfield><subfield code="g">2015(2015)</subfield><subfield code="w">(DE-627)229671004</subfield><subfield code="w">(DE-600)1385243-7</subfield><subfield code="w">(DE-576)9229671002</subfield><subfield code="x">1024-123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2015</subfield><subfield code="g">year:2015</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1155/2015/181536</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1674474513</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/article/5e03e6233a1a492a871b3bbae691f34c</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2015</subfield><subfield code="j">2015</subfield></datafield></record></collection>
|
author |
Zhi-hong He |
spellingShingle |
Zhi-hong He ddc 510 misc Clouds misc Finite element analysis misc Aerosols misc Numerical controls misc QA1-939 misc Engineering (General). Civil engineering (General) misc Science misc TA1-2040 misc Mathematics misc Technology Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media |
authorStr |
Zhi-hong He |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)229671004 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1024-123X |
topic_title |
510 ZDB Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media Clouds Finite element analysis Aerosols Numerical controls QA1-939 Engineering (General). Civil engineering (General) Science TA1-2040 Mathematics Technology |
topic |
ddc 510 misc Clouds misc Finite element analysis misc Aerosols misc Numerical controls misc QA1-939 misc Engineering (General). Civil engineering (General) misc Science misc TA1-2040 misc Mathematics misc Technology |
topic_unstemmed |
ddc 510 misc Clouds misc Finite element analysis misc Aerosols misc Numerical controls misc QA1-939 misc Engineering (General). Civil engineering (General) misc Science misc TA1-2040 misc Mathematics misc Technology |
topic_browse |
ddc 510 misc Clouds misc Finite element analysis misc Aerosols misc Numerical controls misc QA1-939 misc Engineering (General). Civil engineering (General) misc Science misc TA1-2040 misc Mathematics misc Technology |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
l m lm s k d skd |
hierarchy_parent_title |
Mathematical problems in engineering |
hierarchy_parent_id |
229671004 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Mathematical problems in engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)229671004 (DE-600)1385243-7 (DE-576)9229671002 |
title |
Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media |
ctrlnum |
(DE-627)OLC1970301597 (DE-599)GBVOLC1970301597 (PRQ)d2351-cc5308ffb4d8276fd154493de5c8eb96a8e6376064187d381c0b6fab179922a53 (KEY)0604837420150000015000000000reproducingkernelparticlemethodforradiativeheattra |
title_full |
Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media |
author_sort |
Zhi-hong He |
journal |
Mathematical problems in engineering |
journalStr |
Mathematical problems in engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Zhi-hong He |
container_volume |
2015 |
class |
510 ZDB |
format_se |
Aufsätze |
author-letter |
Zhi-hong He |
doi_str_mv |
10.1155/2015/181536 |
dewey-full |
510 |
title_sort |
reproducing kernel particle method for radiative heat transfer in 1d participating media |
title_auth |
Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media |
abstract |
The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media. |
abstractGer |
The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media. |
abstract_unstemmed |
The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
title_short |
Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media |
url |
http://dx.doi.org/10.1155/2015/181536 http://search.proquest.com/docview/1674474513 https://doaj.org/article/5e03e6233a1a492a871b3bbae691f34c |
remote_bool |
false |
author2 |
Lei Mu Shi-kui Dong |
author2Str |
Lei Mu Shi-kui Dong |
ppnlink |
229671004 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1155/2015/181536 |
up_date |
2024-07-03T14:44:43.702Z |
_version_ |
1803569472422805504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970301597</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714180038.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160211s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1155/2015/181536</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970301597</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970301597</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)d2351-cc5308ffb4d8276fd154493de5c8eb96a8e6376064187d381c0b6fab179922a53</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0604837420150000015000000000reproducingkernelparticlemethodforradiativeheattra</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Zhi-hong He</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reproducing Kernel Particle Method for Radiative Heat Transfer in 1D Participating Media</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The reproducing kernel particle method (RKPM), which is a Lagrangian meshless method, is employed for the calculation of radiative heat transfer in participating media. In the present method, for each discrete particle (i.e., spatial node) within a local support domain, the approximate formulas of the radiative intensity and its derivatives are constructed by the reproducing kernel interpolation function, and the residual function is obtained when these parameters are substituted into the radiative transfer equation. Then the least-squares point collocation technique (LSPCT) is introduced by minimizing the summation of residual function. Five test cases are considered and quantified to verify the meshless method, including isotropic scattering medium, first-order forward scattering medium, pure absorbing medium, absorbing scattering medium, and absorbing, scattering emitting medium. The results are in good agreement with the benchmark methods, showing the reproducing kernel particle method is an efficient, accurate, and stable method for the calculation of radiative transfer in participating media.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clouds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerosols</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical controls</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QA1-939</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering (General). Civil engineering (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TA1-2040</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Lei Mu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Shi-kui Dong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematical problems in engineering</subfield><subfield code="d">New York, NY : Hindawi, 1995</subfield><subfield code="g">2015(2015)</subfield><subfield code="w">(DE-627)229671004</subfield><subfield code="w">(DE-600)1385243-7</subfield><subfield code="w">(DE-576)9229671002</subfield><subfield code="x">1024-123X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2015</subfield><subfield code="g">year:2015</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1155/2015/181536</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1674474513</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://doaj.org/article/5e03e6233a1a492a871b3bbae691f34c</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2015</subfield><subfield code="j">2015</subfield></datafield></record></collection>
|
score |
7.4016485 |