Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks
In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over gener...
Ausführliche Beschreibung
Autor*in: |
Basar, Tamer [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on automatic control - New York, NY : Inst., 1963, 61(2016), 2, Seite 443-455 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2016 ; number:2 ; pages:443-455 |
Links: |
---|
DOI / URN: |
10.1109/TAC.2015.2440568 |
---|
Katalog-ID: |
OLC1970418907 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1970418907 | ||
003 | DE-627 | ||
005 | 20210716062926.0 | ||
007 | tu | ||
008 | 160212s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TAC.2015.2440568 |2 doi | |
028 | 5 | 2 | |a PQ20160307 |
035 | |a (DE-627)OLC1970418907 | ||
035 | |a (DE-599)GBVOLC1970418907 | ||
035 | |a (PRQ)c990-ff77629e3897655fca91a153e79a2a8b98c67a48b9c8626391b17be5bdebe50f0 | ||
035 | |a (KEY)0005057120160000061000200443convergencetimeforunbiasedquantizedconsensusoverst | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Basar, Tamer |e verfasserin |4 aut | |
245 | 1 | 0 | |a Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs. | ||
650 | 4 | |a Robot sensing systems | |
650 | 4 | |a Protocols | |
650 | 4 | |a Heuristic algorithms | |
650 | 4 | |a convergence time | |
650 | 4 | |a Upper bound | |
650 | 4 | |a random walk | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Markov chains | |
650 | 4 | |a Convergence | |
650 | 4 | |a spectral representation | |
650 | 4 | |a Quantized consensus | |
650 | 4 | |a time varying networks | |
650 | 4 | |a Markov processes | |
650 | 4 | |a Probability | |
650 | 4 | |a Graphs | |
650 | 4 | |a Markov analysis | |
700 | 1 | |a Etesami, Seyed Rasoul |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on automatic control |d New York, NY : Inst., 1963 |g 61(2016), 2, Seite 443-455 |w (DE-627)129601705 |w (DE-600)241443-0 |w (DE-576)015095320 |x 0018-9286 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2016 |g number:2 |g pages:443-455 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TAC.2015.2440568 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7117385 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_193 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2016 | ||
912 | |a GBV_ILN_2333 | ||
912 | |a GBV_ILN_4193 | ||
951 | |a AR | ||
952 | |d 61 |j 2016 |e 2 |h 443-455 |
author_variant |
t b tb |
---|---|
matchkey_str |
article:00189286:2016----::ovrectmfrnisduniecnessvrttc |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TAC.2015.2440568 doi PQ20160307 (DE-627)OLC1970418907 (DE-599)GBVOLC1970418907 (PRQ)c990-ff77629e3897655fca91a153e79a2a8b98c67a48b9c8626391b17be5bdebe50f0 (KEY)0005057120160000061000200443convergencetimeforunbiasedquantizedconsensusoverst DE-627 ger DE-627 rakwb eng 620 DNB Basar, Tamer verfasserin aut Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs. Robot sensing systems Protocols Heuristic algorithms convergence time Upper bound random walk Harmonic analysis Markov chains Convergence spectral representation Quantized consensus time varying networks Markov processes Probability Graphs Markov analysis Etesami, Seyed Rasoul oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 61(2016), 2, Seite 443-455 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:61 year:2016 number:2 pages:443-455 http://dx.doi.org/10.1109/TAC.2015.2440568 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7117385 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 61 2016 2 443-455 |
spelling |
10.1109/TAC.2015.2440568 doi PQ20160307 (DE-627)OLC1970418907 (DE-599)GBVOLC1970418907 (PRQ)c990-ff77629e3897655fca91a153e79a2a8b98c67a48b9c8626391b17be5bdebe50f0 (KEY)0005057120160000061000200443convergencetimeforunbiasedquantizedconsensusoverst DE-627 ger DE-627 rakwb eng 620 DNB Basar, Tamer verfasserin aut Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs. Robot sensing systems Protocols Heuristic algorithms convergence time Upper bound random walk Harmonic analysis Markov chains Convergence spectral representation Quantized consensus time varying networks Markov processes Probability Graphs Markov analysis Etesami, Seyed Rasoul oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 61(2016), 2, Seite 443-455 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:61 year:2016 number:2 pages:443-455 http://dx.doi.org/10.1109/TAC.2015.2440568 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7117385 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 61 2016 2 443-455 |
allfields_unstemmed |
10.1109/TAC.2015.2440568 doi PQ20160307 (DE-627)OLC1970418907 (DE-599)GBVOLC1970418907 (PRQ)c990-ff77629e3897655fca91a153e79a2a8b98c67a48b9c8626391b17be5bdebe50f0 (KEY)0005057120160000061000200443convergencetimeforunbiasedquantizedconsensusoverst DE-627 ger DE-627 rakwb eng 620 DNB Basar, Tamer verfasserin aut Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs. Robot sensing systems Protocols Heuristic algorithms convergence time Upper bound random walk Harmonic analysis Markov chains Convergence spectral representation Quantized consensus time varying networks Markov processes Probability Graphs Markov analysis Etesami, Seyed Rasoul oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 61(2016), 2, Seite 443-455 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:61 year:2016 number:2 pages:443-455 http://dx.doi.org/10.1109/TAC.2015.2440568 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7117385 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 61 2016 2 443-455 |
allfieldsGer |
10.1109/TAC.2015.2440568 doi PQ20160307 (DE-627)OLC1970418907 (DE-599)GBVOLC1970418907 (PRQ)c990-ff77629e3897655fca91a153e79a2a8b98c67a48b9c8626391b17be5bdebe50f0 (KEY)0005057120160000061000200443convergencetimeforunbiasedquantizedconsensusoverst DE-627 ger DE-627 rakwb eng 620 DNB Basar, Tamer verfasserin aut Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs. Robot sensing systems Protocols Heuristic algorithms convergence time Upper bound random walk Harmonic analysis Markov chains Convergence spectral representation Quantized consensus time varying networks Markov processes Probability Graphs Markov analysis Etesami, Seyed Rasoul oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 61(2016), 2, Seite 443-455 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:61 year:2016 number:2 pages:443-455 http://dx.doi.org/10.1109/TAC.2015.2440568 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7117385 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 61 2016 2 443-455 |
allfieldsSound |
10.1109/TAC.2015.2440568 doi PQ20160307 (DE-627)OLC1970418907 (DE-599)GBVOLC1970418907 (PRQ)c990-ff77629e3897655fca91a153e79a2a8b98c67a48b9c8626391b17be5bdebe50f0 (KEY)0005057120160000061000200443convergencetimeforunbiasedquantizedconsensusoverst DE-627 ger DE-627 rakwb eng 620 DNB Basar, Tamer verfasserin aut Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs. Robot sensing systems Protocols Heuristic algorithms convergence time Upper bound random walk Harmonic analysis Markov chains Convergence spectral representation Quantized consensus time varying networks Markov processes Probability Graphs Markov analysis Etesami, Seyed Rasoul oth Enthalten in IEEE transactions on automatic control New York, NY : Inst., 1963 61(2016), 2, Seite 443-455 (DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 0018-9286 nnns volume:61 year:2016 number:2 pages:443-455 http://dx.doi.org/10.1109/TAC.2015.2440568 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7117385 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 AR 61 2016 2 443-455 |
language |
English |
source |
Enthalten in IEEE transactions on automatic control 61(2016), 2, Seite 443-455 volume:61 year:2016 number:2 pages:443-455 |
sourceStr |
Enthalten in IEEE transactions on automatic control 61(2016), 2, Seite 443-455 volume:61 year:2016 number:2 pages:443-455 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Robot sensing systems Protocols Heuristic algorithms convergence time Upper bound random walk Harmonic analysis Markov chains Convergence spectral representation Quantized consensus time varying networks Markov processes Probability Graphs Markov analysis |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on automatic control |
authorswithroles_txt_mv |
Basar, Tamer @@aut@@ Etesami, Seyed Rasoul @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129601705 |
dewey-sort |
3620 |
id |
OLC1970418907 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970418907</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716062926.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160212s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TAC.2015.2440568</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970418907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970418907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c990-ff77629e3897655fca91a153e79a2a8b98c67a48b9c8626391b17be5bdebe50f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0005057120160000061000200443convergencetimeforunbiasedquantizedconsensusoverst</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Basar, Tamer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robot sensing systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protocols</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random walk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov chains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectral representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantized consensus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time varying networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Etesami, Seyed Rasoul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on automatic control</subfield><subfield code="d">New York, NY : Inst., 1963</subfield><subfield code="g">61(2016), 2, Seite 443-455</subfield><subfield code="w">(DE-627)129601705</subfield><subfield code="w">(DE-600)241443-0</subfield><subfield code="w">(DE-576)015095320</subfield><subfield code="x">0018-9286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:443-455</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TAC.2015.2440568</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7117385</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">443-455</subfield></datafield></record></collection>
|
author |
Basar, Tamer |
spellingShingle |
Basar, Tamer ddc 620 misc Robot sensing systems misc Protocols misc Heuristic algorithms misc convergence time misc Upper bound misc random walk misc Harmonic analysis misc Markov chains misc Convergence misc spectral representation misc Quantized consensus misc time varying networks misc Markov processes misc Probability misc Graphs misc Markov analysis Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks |
authorStr |
Basar, Tamer |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601705 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9286 |
topic_title |
620 DNB Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks Robot sensing systems Protocols Heuristic algorithms convergence time Upper bound random walk Harmonic analysis Markov chains Convergence spectral representation Quantized consensus time varying networks Markov processes Probability Graphs Markov analysis |
topic |
ddc 620 misc Robot sensing systems misc Protocols misc Heuristic algorithms misc convergence time misc Upper bound misc random walk misc Harmonic analysis misc Markov chains misc Convergence misc spectral representation misc Quantized consensus misc time varying networks misc Markov processes misc Probability misc Graphs misc Markov analysis |
topic_unstemmed |
ddc 620 misc Robot sensing systems misc Protocols misc Heuristic algorithms misc convergence time misc Upper bound misc random walk misc Harmonic analysis misc Markov chains misc Convergence misc spectral representation misc Quantized consensus misc time varying networks misc Markov processes misc Probability misc Graphs misc Markov analysis |
topic_browse |
ddc 620 misc Robot sensing systems misc Protocols misc Heuristic algorithms misc convergence time misc Upper bound misc random walk misc Harmonic analysis misc Markov chains misc Convergence misc spectral representation misc Quantized consensus misc time varying networks misc Markov processes misc Probability misc Graphs misc Markov analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s r e sr sre |
hierarchy_parent_title |
IEEE transactions on automatic control |
hierarchy_parent_id |
129601705 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on automatic control |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601705 (DE-600)241443-0 (DE-576)015095320 |
title |
Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks |
ctrlnum |
(DE-627)OLC1970418907 (DE-599)GBVOLC1970418907 (PRQ)c990-ff77629e3897655fca91a153e79a2a8b98c67a48b9c8626391b17be5bdebe50f0 (KEY)0005057120160000061000200443convergencetimeforunbiasedquantizedconsensusoverst |
title_full |
Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks |
author_sort |
Basar, Tamer |
journal |
IEEE transactions on automatic control |
journalStr |
IEEE transactions on automatic control |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
443 |
author_browse |
Basar, Tamer |
container_volume |
61 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Basar, Tamer |
doi_str_mv |
10.1109/TAC.2015.2440568 |
dewey-full |
620 |
title_sort |
convergence time for unbiased quantized consensus over static and dynamic networks |
title_auth |
Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks |
abstract |
In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs. |
abstractGer |
In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs. |
abstract_unstemmed |
In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_11 GBV_ILN_30 GBV_ILN_70 GBV_ILN_120 GBV_ILN_193 GBV_ILN_2014 GBV_ILN_2016 GBV_ILN_2333 GBV_ILN_4193 |
container_issue |
2 |
title_short |
Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks |
url |
http://dx.doi.org/10.1109/TAC.2015.2440568 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7117385 |
remote_bool |
false |
author2 |
Etesami, Seyed Rasoul |
author2Str |
Etesami, Seyed Rasoul |
ppnlink |
129601705 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/TAC.2015.2440568 |
up_date |
2024-07-03T15:17:03.784Z |
_version_ |
1803571506746228736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970418907</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716062926.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160212s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TAC.2015.2440568</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970418907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970418907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c990-ff77629e3897655fca91a153e79a2a8b98c67a48b9c8626391b17be5bdebe50f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0005057120160000061000200443convergencetimeforunbiasedquantizedconsensusoverst</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Basar, Tamer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convergence Time for Unbiased Quantized Consensus Over Static and Dynamic Networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, the question of expected time to convergence is addressed for unbiased quantized consensus on undirected connected graphs, and some strong results are obtained. The paper first provides a tight expression for the expected convergence time of the unbiased quantized consensus over general but fixed networks. It is shown that the maximum expected convergence time lies within a constant factor of the maximum hitting time of an appropriate lazy random walk, using the theory of harmonic functions for reversible Markov chains. Following this, and using electric resistance analogy of the reversible Markov chains, the paper provides an upper bound of <inline-formula> <tex-math notation="TeX">O(nmD\log n)</tex-math></inline-formula> for the expected convergence time to consensus, where <inline-formula> <tex-math notation="TeX">n</tex-math></inline-formula>, <inline-formula> <tex-math notation="TeX">m</tex-math></inline-formula> and <inline-formula> <tex-math notation="TeX">D</tex-math></inline-formula>, denote, respectively, the number of nodes, the number of edges, and the diameter of the network. Moreover, the paper shows that the above upper bound is tight up to a factor of <inline-formula> <tex-math notation="TeX">\log n</tex-math></inline-formula> for some simple graphs such as line graph and cycle. Finally, the results are extended to bound the expected convergence time of the underlying dynamics in time-varying networks. Modeling such dynamics as the evolution of a time inhomogeneous Markov chain, the paper derives an upper bound for the expected convergence time of the dynamics using the spectral representation of the networks. This upper bound is significantly better than earlier ones given for different quantized consensus protocols over time-varying graphs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robot sensing systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protocols</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">convergence time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper bound</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">random walk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov chains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectral representation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantized consensus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">time varying networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Etesami, Seyed Rasoul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on automatic control</subfield><subfield code="d">New York, NY : Inst., 1963</subfield><subfield code="g">61(2016), 2, Seite 443-455</subfield><subfield code="w">(DE-627)129601705</subfield><subfield code="w">(DE-600)241443-0</subfield><subfield code="w">(DE-576)015095320</subfield><subfield code="x">0018-9286</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:443-455</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TAC.2015.2440568</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7117385</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2016</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">443-455</subfield></datafield></record></collection>
|
score |
7.4024153 |