Symbolic factorization methodology for multistage amplifier transfer functions
In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer...
Ausführliche Beschreibung
Autor*in: |
Pennisi, S [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of circuit theory and applications - London : Wiley, 1973, 44(2016), 1, Seite 38-59 |
---|---|
Übergeordnetes Werk: |
volume:44 ; year:2016 ; number:1 ; pages:38-59 |
Links: |
---|
DOI / URN: |
10.1002/cta.2061 |
---|
Katalog-ID: |
OLC1970874228 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1970874228 | ||
003 | DE-627 | ||
005 | 20230714180807.0 | ||
007 | tu | ||
008 | 160212s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/cta.2061 |2 doi | |
028 | 5 | 2 | |a PQ20160212 |
035 | |a (DE-627)OLC1970874228 | ||
035 | |a (DE-599)GBVOLC1970874228 | ||
035 | |a (PRQ)c1281-68e898f28ac88798137c9b5b4c0d9e88ff36a3ba31e25e92481bd769aa8a4e303 | ||
035 | |a (KEY)0080156920160000044000100038symbolicfactorizationmethodologyformultistageampli | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q ZDB |
100 | 1 | |a Pennisi, S |e verfasserin |4 aut | |
245 | 1 | 0 | |a Symbolic factorization methodology for multistage amplifier transfer functions |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function. | ||
540 | |a Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. | ||
650 | 4 | |a pole–zero extraction | |
650 | 4 | |a symbolic analysis | |
650 | 4 | |a small‐signal analysis | |
650 | 4 | |a analog design automation | |
650 | 4 | |a linear analog circuits | |
700 | 1 | |a Grasso, A. D |4 oth | |
700 | 1 | |a Vazzana, G |4 oth | |
700 | 1 | |a Marano, D |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal of circuit theory and applications |d London : Wiley, 1973 |g 44(2016), 1, Seite 38-59 |w (DE-627)129399531 |w (DE-600)186276-5 |w (DE-576)01478226X |x 0098-9886 |7 nnns |
773 | 1 | 8 | |g volume:44 |g year:2016 |g number:1 |g pages:38-59 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/cta.2061 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/cta.2061/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1757591516 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 44 |j 2016 |e 1 |h 38-59 |
author_variant |
s p sp |
---|---|
matchkey_str |
article:00989886:2016----::yblcatrztomtoooyomlitgapi |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1002/cta.2061 doi PQ20160212 (DE-627)OLC1970874228 (DE-599)GBVOLC1970874228 (PRQ)c1281-68e898f28ac88798137c9b5b4c0d9e88ff36a3ba31e25e92481bd769aa8a4e303 (KEY)0080156920160000044000100038symbolicfactorizationmethodologyformultistageampli DE-627 ger DE-627 rakwb eng 620 ZDB Pennisi, S verfasserin aut Symbolic factorization methodology for multistage amplifier transfer functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. pole–zero extraction symbolic analysis small‐signal analysis analog design automation linear analog circuits Grasso, A. D oth Vazzana, G oth Marano, D oth Enthalten in International journal of circuit theory and applications London : Wiley, 1973 44(2016), 1, Seite 38-59 (DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X 0098-9886 nnns volume:44 year:2016 number:1 pages:38-59 http://dx.doi.org/10.1002/cta.2061 Volltext http://onlinelibrary.wiley.com/doi/10.1002/cta.2061/abstract http://search.proquest.com/docview/1757591516 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 44 2016 1 38-59 |
spelling |
10.1002/cta.2061 doi PQ20160212 (DE-627)OLC1970874228 (DE-599)GBVOLC1970874228 (PRQ)c1281-68e898f28ac88798137c9b5b4c0d9e88ff36a3ba31e25e92481bd769aa8a4e303 (KEY)0080156920160000044000100038symbolicfactorizationmethodologyformultistageampli DE-627 ger DE-627 rakwb eng 620 ZDB Pennisi, S verfasserin aut Symbolic factorization methodology for multistage amplifier transfer functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. pole–zero extraction symbolic analysis small‐signal analysis analog design automation linear analog circuits Grasso, A. D oth Vazzana, G oth Marano, D oth Enthalten in International journal of circuit theory and applications London : Wiley, 1973 44(2016), 1, Seite 38-59 (DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X 0098-9886 nnns volume:44 year:2016 number:1 pages:38-59 http://dx.doi.org/10.1002/cta.2061 Volltext http://onlinelibrary.wiley.com/doi/10.1002/cta.2061/abstract http://search.proquest.com/docview/1757591516 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 44 2016 1 38-59 |
allfields_unstemmed |
10.1002/cta.2061 doi PQ20160212 (DE-627)OLC1970874228 (DE-599)GBVOLC1970874228 (PRQ)c1281-68e898f28ac88798137c9b5b4c0d9e88ff36a3ba31e25e92481bd769aa8a4e303 (KEY)0080156920160000044000100038symbolicfactorizationmethodologyformultistageampli DE-627 ger DE-627 rakwb eng 620 ZDB Pennisi, S verfasserin aut Symbolic factorization methodology for multistage amplifier transfer functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. pole–zero extraction symbolic analysis small‐signal analysis analog design automation linear analog circuits Grasso, A. D oth Vazzana, G oth Marano, D oth Enthalten in International journal of circuit theory and applications London : Wiley, 1973 44(2016), 1, Seite 38-59 (DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X 0098-9886 nnns volume:44 year:2016 number:1 pages:38-59 http://dx.doi.org/10.1002/cta.2061 Volltext http://onlinelibrary.wiley.com/doi/10.1002/cta.2061/abstract http://search.proquest.com/docview/1757591516 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 44 2016 1 38-59 |
allfieldsGer |
10.1002/cta.2061 doi PQ20160212 (DE-627)OLC1970874228 (DE-599)GBVOLC1970874228 (PRQ)c1281-68e898f28ac88798137c9b5b4c0d9e88ff36a3ba31e25e92481bd769aa8a4e303 (KEY)0080156920160000044000100038symbolicfactorizationmethodologyformultistageampli DE-627 ger DE-627 rakwb eng 620 ZDB Pennisi, S verfasserin aut Symbolic factorization methodology for multistage amplifier transfer functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. pole–zero extraction symbolic analysis small‐signal analysis analog design automation linear analog circuits Grasso, A. D oth Vazzana, G oth Marano, D oth Enthalten in International journal of circuit theory and applications London : Wiley, 1973 44(2016), 1, Seite 38-59 (DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X 0098-9886 nnns volume:44 year:2016 number:1 pages:38-59 http://dx.doi.org/10.1002/cta.2061 Volltext http://onlinelibrary.wiley.com/doi/10.1002/cta.2061/abstract http://search.proquest.com/docview/1757591516 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 44 2016 1 38-59 |
allfieldsSound |
10.1002/cta.2061 doi PQ20160212 (DE-627)OLC1970874228 (DE-599)GBVOLC1970874228 (PRQ)c1281-68e898f28ac88798137c9b5b4c0d9e88ff36a3ba31e25e92481bd769aa8a4e303 (KEY)0080156920160000044000100038symbolicfactorizationmethodologyformultistageampli DE-627 ger DE-627 rakwb eng 620 ZDB Pennisi, S verfasserin aut Symbolic factorization methodology for multistage amplifier transfer functions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. pole–zero extraction symbolic analysis small‐signal analysis analog design automation linear analog circuits Grasso, A. D oth Vazzana, G oth Marano, D oth Enthalten in International journal of circuit theory and applications London : Wiley, 1973 44(2016), 1, Seite 38-59 (DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X 0098-9886 nnns volume:44 year:2016 number:1 pages:38-59 http://dx.doi.org/10.1002/cta.2061 Volltext http://onlinelibrary.wiley.com/doi/10.1002/cta.2061/abstract http://search.proquest.com/docview/1757591516 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 AR 44 2016 1 38-59 |
language |
English |
source |
Enthalten in International journal of circuit theory and applications 44(2016), 1, Seite 38-59 volume:44 year:2016 number:1 pages:38-59 |
sourceStr |
Enthalten in International journal of circuit theory and applications 44(2016), 1, Seite 38-59 volume:44 year:2016 number:1 pages:38-59 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
pole–zero extraction symbolic analysis small‐signal analysis analog design automation linear analog circuits |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of circuit theory and applications |
authorswithroles_txt_mv |
Pennisi, S @@aut@@ Grasso, A. D @@oth@@ Vazzana, G @@oth@@ Marano, D @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129399531 |
dewey-sort |
3620 |
id |
OLC1970874228 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970874228</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714180807.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160212s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/cta.2061</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970874228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970874228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1281-68e898f28ac88798137c9b5b4c0d9e88ff36a3ba31e25e92481bd769aa8a4e303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0080156920160000044000100038symbolicfactorizationmethodologyformultistageampli</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pennisi, S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symbolic factorization methodology for multistage amplifier transfer functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pole–zero extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symbolic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">small‐signal analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analog design automation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear analog circuits</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grasso, A. D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vazzana, G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marano, D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of circuit theory and applications</subfield><subfield code="d">London : Wiley, 1973</subfield><subfield code="g">44(2016), 1, Seite 38-59</subfield><subfield code="w">(DE-627)129399531</subfield><subfield code="w">(DE-600)186276-5</subfield><subfield code="w">(DE-576)01478226X</subfield><subfield code="x">0098-9886</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:38-59</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/cta.2061</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/cta.2061/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1757591516</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">38-59</subfield></datafield></record></collection>
|
author |
Pennisi, S |
spellingShingle |
Pennisi, S ddc 620 misc pole–zero extraction misc symbolic analysis misc small‐signal analysis misc analog design automation misc linear analog circuits Symbolic factorization methodology for multistage amplifier transfer functions |
authorStr |
Pennisi, S |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129399531 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0098-9886 |
topic_title |
620 ZDB Symbolic factorization methodology for multistage amplifier transfer functions pole–zero extraction symbolic analysis small‐signal analysis analog design automation linear analog circuits |
topic |
ddc 620 misc pole–zero extraction misc symbolic analysis misc small‐signal analysis misc analog design automation misc linear analog circuits |
topic_unstemmed |
ddc 620 misc pole–zero extraction misc symbolic analysis misc small‐signal analysis misc analog design automation misc linear analog circuits |
topic_browse |
ddc 620 misc pole–zero extraction misc symbolic analysis misc small‐signal analysis misc analog design automation misc linear analog circuits |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
a d g ad adg g v gv d m dm |
hierarchy_parent_title |
International journal of circuit theory and applications |
hierarchy_parent_id |
129399531 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of circuit theory and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129399531 (DE-600)186276-5 (DE-576)01478226X |
title |
Symbolic factorization methodology for multistage amplifier transfer functions |
ctrlnum |
(DE-627)OLC1970874228 (DE-599)GBVOLC1970874228 (PRQ)c1281-68e898f28ac88798137c9b5b4c0d9e88ff36a3ba31e25e92481bd769aa8a4e303 (KEY)0080156920160000044000100038symbolicfactorizationmethodologyformultistageampli |
title_full |
Symbolic factorization methodology for multistage amplifier transfer functions |
author_sort |
Pennisi, S |
journal |
International journal of circuit theory and applications |
journalStr |
International journal of circuit theory and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
38 |
author_browse |
Pennisi, S |
container_volume |
44 |
class |
620 ZDB |
format_se |
Aufsätze |
author-letter |
Pennisi, S |
doi_str_mv |
10.1002/cta.2061 |
dewey-full |
620 |
title_sort |
symbolic factorization methodology for multistage amplifier transfer functions |
title_auth |
Symbolic factorization methodology for multistage amplifier transfer functions |
abstract |
In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function. |
abstractGer |
In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function. |
abstract_unstemmed |
In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_70 |
container_issue |
1 |
title_short |
Symbolic factorization methodology for multistage amplifier transfer functions |
url |
http://dx.doi.org/10.1002/cta.2061 http://onlinelibrary.wiley.com/doi/10.1002/cta.2061/abstract http://search.proquest.com/docview/1757591516 |
remote_bool |
false |
author2 |
Grasso, A. D Vazzana, G Marano, D |
author2Str |
Grasso, A. D Vazzana, G Marano, D |
ppnlink |
129399531 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1002/cta.2061 |
up_date |
2024-07-03T17:13:17.063Z |
_version_ |
1803578818757132288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1970874228</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714180807.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160212s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/cta.2061</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1970874228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1970874228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1281-68e898f28ac88798137c9b5b4c0d9e88ff36a3ba31e25e92481bd769aa8a4e303</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0080156920160000044000100038symbolicfactorizationmethodologyformultistageampli</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ZDB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pennisi, S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symbolic factorization methodology for multistage amplifier transfer functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, we discuss a symbolic simplification methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is also suitable to be implemented in symbolic computer‐aided design tools. Although the proposed methodology is mainly intended for the analysis and design of operational transconductance amplifiers, it can straightforwardly be applied to the small‐signal analysis of any analog linear circuit. Design examples are provided to verify the effectiveness of the proposed approach implemented through a Matlab function. Copyright © 2015 John Wiley & Sons, Ltd. We introduce a symbolic methodology to derive approximated factorized forms of the transfer function of multistage amplifiers in the complex frequency domain. The developed approach is useful for hand calculation and is suitable to be implemented in suymbolic CAD tools. Design examples are provide to verify the effectiveness of the proposed approach implemented through a Matlab function.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pole–zero extraction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">symbolic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">small‐signal analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">analog design automation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear analog circuits</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grasso, A. D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vazzana, G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marano, D</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of circuit theory and applications</subfield><subfield code="d">London : Wiley, 1973</subfield><subfield code="g">44(2016), 1, Seite 38-59</subfield><subfield code="w">(DE-627)129399531</subfield><subfield code="w">(DE-600)186276-5</subfield><subfield code="w">(DE-576)01478226X</subfield><subfield code="x">0098-9886</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:44</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:38-59</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/cta.2061</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/cta.2061/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1757591516</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">44</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">38-59</subfield></datafield></record></collection>
|
score |
7.40112 |