Design of Superconducting Magnets for a Compact Carbon Gantry
For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-ma...
Ausführliche Beschreibung
Autor*in: |
Iwata, Yoshiyuki [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on applied superconductivity - New York, NY : Inst., 1991, 26(2016), 4, Seite 1-4 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2016 ; number:4 ; pages:1-4 |
Links: |
---|
DOI / URN: |
10.1109/TASC.2015.2509187 |
---|
Katalog-ID: |
OLC1971231770 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1971231770 | ||
003 | DE-627 | ||
005 | 20230714181343.0 | ||
007 | tu | ||
008 | 160212s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TASC.2015.2509187 |2 doi | |
028 | 5 | 2 | |a PQ20160212 |
035 | |a (DE-627)OLC1971231770 | ||
035 | |a (DE-599)GBVOLC1971231770 | ||
035 | |a (PRQ)c1006-8b804901dc488000a98d06428f3431b0627546d0c4f403d37c8a4ab5745222f20 | ||
035 | |a (KEY)0203240620160000026000400001designofsuperconductingmagnetsforacompactcarbongan | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DNB |
100 | 1 | |a Iwata, Yoshiyuki |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design of Superconducting Magnets for a Compact Carbon Gantry |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented. | ||
650 | 4 | |a Optics | |
650 | 4 | |a Magnetic fields | |
650 | 4 | |a accelerator magnet | |
650 | 4 | |a carbon therapy | |
650 | 4 | |a Carbon | |
650 | 4 | |a Kinetic energy | |
650 | 4 | |a Superconducting coils | |
650 | 4 | |a rotating gantry | |
650 | 4 | |a Optical beams | |
650 | 4 | |a Superconducting magnets | |
650 | 4 | |a curved magnet | |
650 | 4 | |a surface winding | |
700 | 1 | |a Shirai, Toshiyuki |4 oth | |
700 | 1 | |a Noda, Koji |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on applied superconductivity |d New York, NY : Inst., 1991 |g 26(2016), 4, Seite 1-4 |w (DE-627)130969559 |w (DE-600)1070182-5 |w (DE-576)025189840 |x 1051-8223 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2016 |g number:4 |g pages:1-4 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TASC.2015.2509187 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7360915 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 26 |j 2016 |e 4 |h 1-4 |
author_variant |
y i yi |
---|---|
matchkey_str |
article:10518223:2016----::einfuecnutnmgesoaop |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TASC.2015.2509187 doi PQ20160212 (DE-627)OLC1971231770 (DE-599)GBVOLC1971231770 (PRQ)c1006-8b804901dc488000a98d06428f3431b0627546d0c4f403d37c8a4ab5745222f20 (KEY)0203240620160000026000400001designofsuperconductingmagnetsforacompactcarbongan DE-627 ger DE-627 rakwb eng 530 620 DNB Iwata, Yoshiyuki verfasserin aut Design of Superconducting Magnets for a Compact Carbon Gantry 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented. Optics Magnetic fields accelerator magnet carbon therapy Carbon Kinetic energy Superconducting coils rotating gantry Optical beams Superconducting magnets curved magnet surface winding Shirai, Toshiyuki oth Noda, Koji oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 26(2016), 4, Seite 1-4 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:26 year:2016 number:4 pages:1-4 http://dx.doi.org/10.1109/TASC.2015.2509187 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7360915 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 26 2016 4 1-4 |
spelling |
10.1109/TASC.2015.2509187 doi PQ20160212 (DE-627)OLC1971231770 (DE-599)GBVOLC1971231770 (PRQ)c1006-8b804901dc488000a98d06428f3431b0627546d0c4f403d37c8a4ab5745222f20 (KEY)0203240620160000026000400001designofsuperconductingmagnetsforacompactcarbongan DE-627 ger DE-627 rakwb eng 530 620 DNB Iwata, Yoshiyuki verfasserin aut Design of Superconducting Magnets for a Compact Carbon Gantry 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented. Optics Magnetic fields accelerator magnet carbon therapy Carbon Kinetic energy Superconducting coils rotating gantry Optical beams Superconducting magnets curved magnet surface winding Shirai, Toshiyuki oth Noda, Koji oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 26(2016), 4, Seite 1-4 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:26 year:2016 number:4 pages:1-4 http://dx.doi.org/10.1109/TASC.2015.2509187 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7360915 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 26 2016 4 1-4 |
allfields_unstemmed |
10.1109/TASC.2015.2509187 doi PQ20160212 (DE-627)OLC1971231770 (DE-599)GBVOLC1971231770 (PRQ)c1006-8b804901dc488000a98d06428f3431b0627546d0c4f403d37c8a4ab5745222f20 (KEY)0203240620160000026000400001designofsuperconductingmagnetsforacompactcarbongan DE-627 ger DE-627 rakwb eng 530 620 DNB Iwata, Yoshiyuki verfasserin aut Design of Superconducting Magnets for a Compact Carbon Gantry 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented. Optics Magnetic fields accelerator magnet carbon therapy Carbon Kinetic energy Superconducting coils rotating gantry Optical beams Superconducting magnets curved magnet surface winding Shirai, Toshiyuki oth Noda, Koji oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 26(2016), 4, Seite 1-4 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:26 year:2016 number:4 pages:1-4 http://dx.doi.org/10.1109/TASC.2015.2509187 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7360915 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 26 2016 4 1-4 |
allfieldsGer |
10.1109/TASC.2015.2509187 doi PQ20160212 (DE-627)OLC1971231770 (DE-599)GBVOLC1971231770 (PRQ)c1006-8b804901dc488000a98d06428f3431b0627546d0c4f403d37c8a4ab5745222f20 (KEY)0203240620160000026000400001designofsuperconductingmagnetsforacompactcarbongan DE-627 ger DE-627 rakwb eng 530 620 DNB Iwata, Yoshiyuki verfasserin aut Design of Superconducting Magnets for a Compact Carbon Gantry 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented. Optics Magnetic fields accelerator magnet carbon therapy Carbon Kinetic energy Superconducting coils rotating gantry Optical beams Superconducting magnets curved magnet surface winding Shirai, Toshiyuki oth Noda, Koji oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 26(2016), 4, Seite 1-4 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:26 year:2016 number:4 pages:1-4 http://dx.doi.org/10.1109/TASC.2015.2509187 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7360915 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 26 2016 4 1-4 |
allfieldsSound |
10.1109/TASC.2015.2509187 doi PQ20160212 (DE-627)OLC1971231770 (DE-599)GBVOLC1971231770 (PRQ)c1006-8b804901dc488000a98d06428f3431b0627546d0c4f403d37c8a4ab5745222f20 (KEY)0203240620160000026000400001designofsuperconductingmagnetsforacompactcarbongan DE-627 ger DE-627 rakwb eng 530 620 DNB Iwata, Yoshiyuki verfasserin aut Design of Superconducting Magnets for a Compact Carbon Gantry 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented. Optics Magnetic fields accelerator magnet carbon therapy Carbon Kinetic energy Superconducting coils rotating gantry Optical beams Superconducting magnets curved magnet surface winding Shirai, Toshiyuki oth Noda, Koji oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 26(2016), 4, Seite 1-4 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:26 year:2016 number:4 pages:1-4 http://dx.doi.org/10.1109/TASC.2015.2509187 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7360915 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 26 2016 4 1-4 |
language |
English |
source |
Enthalten in IEEE transactions on applied superconductivity 26(2016), 4, Seite 1-4 volume:26 year:2016 number:4 pages:1-4 |
sourceStr |
Enthalten in IEEE transactions on applied superconductivity 26(2016), 4, Seite 1-4 volume:26 year:2016 number:4 pages:1-4 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Optics Magnetic fields accelerator magnet carbon therapy Carbon Kinetic energy Superconducting coils rotating gantry Optical beams Superconducting magnets curved magnet surface winding |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on applied superconductivity |
authorswithroles_txt_mv |
Iwata, Yoshiyuki @@aut@@ Shirai, Toshiyuki @@oth@@ Noda, Koji @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130969559 |
dewey-sort |
3530 |
id |
OLC1971231770 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1971231770</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714181343.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160212s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TASC.2015.2509187</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1971231770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1971231770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1006-8b804901dc488000a98d06428f3431b0627546d0c4f403d37c8a4ab5745222f20</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0203240620160000026000400001designofsuperconductingmagnetsforacompactcarbongan</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Iwata, Yoshiyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design of Superconducting Magnets for a Compact Carbon Gantry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accelerator magnet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting coils</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotating gantry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical beams</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting magnets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">curved magnet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface winding</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shirai, Toshiyuki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noda, Koji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on applied superconductivity</subfield><subfield code="d">New York, NY : Inst., 1991</subfield><subfield code="g">26(2016), 4, Seite 1-4</subfield><subfield code="w">(DE-627)130969559</subfield><subfield code="w">(DE-600)1070182-5</subfield><subfield code="w">(DE-576)025189840</subfield><subfield code="x">1051-8223</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1-4</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TASC.2015.2509187</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7360915</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">1-4</subfield></datafield></record></collection>
|
author |
Iwata, Yoshiyuki |
spellingShingle |
Iwata, Yoshiyuki ddc 530 misc Optics misc Magnetic fields misc accelerator magnet misc carbon therapy misc Carbon misc Kinetic energy misc Superconducting coils misc rotating gantry misc Optical beams misc Superconducting magnets misc curved magnet misc surface winding Design of Superconducting Magnets for a Compact Carbon Gantry |
authorStr |
Iwata, Yoshiyuki |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130969559 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1051-8223 |
topic_title |
530 620 DNB Design of Superconducting Magnets for a Compact Carbon Gantry Optics Magnetic fields accelerator magnet carbon therapy Carbon Kinetic energy Superconducting coils rotating gantry Optical beams Superconducting magnets curved magnet surface winding |
topic |
ddc 530 misc Optics misc Magnetic fields misc accelerator magnet misc carbon therapy misc Carbon misc Kinetic energy misc Superconducting coils misc rotating gantry misc Optical beams misc Superconducting magnets misc curved magnet misc surface winding |
topic_unstemmed |
ddc 530 misc Optics misc Magnetic fields misc accelerator magnet misc carbon therapy misc Carbon misc Kinetic energy misc Superconducting coils misc rotating gantry misc Optical beams misc Superconducting magnets misc curved magnet misc surface winding |
topic_browse |
ddc 530 misc Optics misc Magnetic fields misc accelerator magnet misc carbon therapy misc Carbon misc Kinetic energy misc Superconducting coils misc rotating gantry misc Optical beams misc Superconducting magnets misc curved magnet misc surface winding |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t s ts k n kn |
hierarchy_parent_title |
IEEE transactions on applied superconductivity |
hierarchy_parent_id |
130969559 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
IEEE transactions on applied superconductivity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 |
title |
Design of Superconducting Magnets for a Compact Carbon Gantry |
ctrlnum |
(DE-627)OLC1971231770 (DE-599)GBVOLC1971231770 (PRQ)c1006-8b804901dc488000a98d06428f3431b0627546d0c4f403d37c8a4ab5745222f20 (KEY)0203240620160000026000400001designofsuperconductingmagnetsforacompactcarbongan |
title_full |
Design of Superconducting Magnets for a Compact Carbon Gantry |
author_sort |
Iwata, Yoshiyuki |
journal |
IEEE transactions on applied superconductivity |
journalStr |
IEEE transactions on applied superconductivity |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Iwata, Yoshiyuki |
container_volume |
26 |
class |
530 620 DNB |
format_se |
Aufsätze |
author-letter |
Iwata, Yoshiyuki |
doi_str_mv |
10.1109/TASC.2015.2509187 |
dewey-full |
530 620 |
title_sort |
design of superconducting magnets for a compact carbon gantry |
title_auth |
Design of Superconducting Magnets for a Compact Carbon Gantry |
abstract |
For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented. |
abstractGer |
For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented. |
abstract_unstemmed |
For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
4 |
title_short |
Design of Superconducting Magnets for a Compact Carbon Gantry |
url |
http://dx.doi.org/10.1109/TASC.2015.2509187 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7360915 |
remote_bool |
false |
author2 |
Shirai, Toshiyuki Noda, Koji |
author2Str |
Shirai, Toshiyuki Noda, Koji |
ppnlink |
130969559 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TASC.2015.2509187 |
up_date |
2024-07-03T18:40:56.281Z |
_version_ |
1803584333447954432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1971231770</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714181343.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160212s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TASC.2015.2509187</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1971231770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1971231770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1006-8b804901dc488000a98d06428f3431b0627546d0c4f403d37c8a4ab5745222f20</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0203240620160000026000400001designofsuperconductingmagnetsforacompactcarbongan</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Iwata, Yoshiyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design of Superconducting Magnets for a Compact Carbon Gantry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">For widespread use of rotating gantries for carbon radiotherapy, we designed a new compact gantry. This new gantry consists of three combined-function superconducting magnets having a bending angle of 90°. The dipole field of the superconducting magnets is set to be <inline-formula> <tex-math notation="LaTeX">B_{\max}=5.02</tex-math></inline-formula> T, corresponding to a bending radius of 1.32 m for transporting carbon ions having kinetic energy of 430 MeV/u. The superconducting magnet also has three independent superconducting quadrupole coils, which are to be wound inside the dipole coil for beam focusing. The dipole and quadrupole coils are electrically isolated in the magnet and connected to independent power supplies so that each field component can be independently excited. Having used the combined-function superconducting magnets, the size of the rotating gantry would become very compact; the length and radius are 5.1 and 4.0 m, respectively. The magnetic field distributions of the superconducting magnets were calculated with a 3-D electromagnetic field solver, Opera-3d code. With calculated fields, the superconducting coils were designed to obtain uniform field distributions. In this paper, the design of this compact rotating gantry and the superconducting magnets is presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">accelerator magnet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting coils</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rotating gantry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical beams</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting magnets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">curved magnet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface winding</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shirai, Toshiyuki</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noda, Koji</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on applied superconductivity</subfield><subfield code="d">New York, NY : Inst., 1991</subfield><subfield code="g">26(2016), 4, Seite 1-4</subfield><subfield code="w">(DE-627)130969559</subfield><subfield code="w">(DE-600)1070182-5</subfield><subfield code="w">(DE-576)025189840</subfield><subfield code="x">1051-8223</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1-4</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TASC.2015.2509187</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7360915</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">1-4</subfield></datafield></record></collection>
|
score |
7.401231 |