Upper bounds for heuristic approaches to the strip packing problem
We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state...
Ausführliche Beschreibung
Autor*in: |
Scheithauer, Guntram [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA. |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: International transactions in operational research - Oxford : Wiley, 1994, 23(2016), 1-2, Seite 93-119 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2016 ; number:1-2 ; pages:93-119 |
Links: |
---|
DOI / URN: |
10.1111/itor.12100 |
---|
Katalog-ID: |
OLC197130400X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC197130400X | ||
003 | DE-627 | ||
005 | 20220215184527.0 | ||
007 | tu | ||
008 | 160212s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1111/itor.12100 |2 doi | |
028 | 5 | 2 | |a PQ20160212 |
035 | |a (DE-627)OLC197130400X | ||
035 | |a (DE-599)GBVOLC197130400X | ||
035 | |a (PRQ)c2160-630dd35ecb4fc00280bc1e5c6b4e4b9639140d876148051e36eaf1f609bbe9830 | ||
035 | |a (KEY)0238234220160000023000100093upperboundsforheuristicapproachestothestrippacking | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
084 | |a QA 10000 |q AVZ |2 rvk | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Scheithauer, Guntram |e verfasserin |4 aut | |
245 | 1 | 0 | |a Upper bounds for heuristic approaches to the strip packing problem |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5. | ||
540 | |a Nutzungsrecht: 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA. | ||
650 | 4 | |a performance ratio | |
650 | 4 | |a strip packing problem | |
650 | 4 | |a cutting and packing | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Heuristic | |
650 | 4 | |a Studies | |
650 | 4 | |a Operations research | |
650 | 4 | |a Packing problem | |
700 | 1 | |a Buchwald, Torsten |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International transactions in operational research |d Oxford : Wiley, 1994 |g 23(2016), 1-2, Seite 93-119 |w (DE-627)182525775 |w (DE-600)1213721-2 |w (DE-576)045288984 |x 0969-6016 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2016 |g number:1-2 |g pages:93-119 |
856 | 4 | 1 | |u http://dx.doi.org/10.1111/itor.12100 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1111/itor.12100/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1729143725 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_4126 | ||
936 | r | v | |a QA 10000 |
936 | b | k | |a 54.00 |q AVZ |
951 | |a AR | ||
952 | |d 23 |j 2016 |e 1-2 |h 93-119 |
author_variant |
g s gs |
---|---|
matchkey_str |
article:09696016:2016----::pebudfrersiapocetteti |
hierarchy_sort_str |
2016 |
bklnumber |
54.00 |
publishDate |
2016 |
allfields |
10.1111/itor.12100 doi PQ20160212 (DE-627)OLC197130400X (DE-599)GBVOLC197130400X (PRQ)c2160-630dd35ecb4fc00280bc1e5c6b4e4b9639140d876148051e36eaf1f609bbe9830 (KEY)0238234220160000023000100093upperboundsforheuristicapproachestothestrippacking DE-627 ger DE-627 rakwb eng 510 DNB QA 10000 AVZ rvk 54.00 bkl Scheithauer, Guntram verfasserin aut Upper bounds for heuristic approaches to the strip packing problem 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5. Nutzungsrecht: 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA. performance ratio strip packing problem cutting and packing Algorithms Heuristic Studies Operations research Packing problem Buchwald, Torsten oth Enthalten in International transactions in operational research Oxford : Wiley, 1994 23(2016), 1-2, Seite 93-119 (DE-627)182525775 (DE-600)1213721-2 (DE-576)045288984 0969-6016 nnns volume:23 year:2016 number:1-2 pages:93-119 http://dx.doi.org/10.1111/itor.12100 Volltext http://onlinelibrary.wiley.com/doi/10.1111/itor.12100/abstract http://search.proquest.com/docview/1729143725 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_26 GBV_ILN_4126 QA 10000 54.00 AVZ AR 23 2016 1-2 93-119 |
spelling |
10.1111/itor.12100 doi PQ20160212 (DE-627)OLC197130400X (DE-599)GBVOLC197130400X (PRQ)c2160-630dd35ecb4fc00280bc1e5c6b4e4b9639140d876148051e36eaf1f609bbe9830 (KEY)0238234220160000023000100093upperboundsforheuristicapproachestothestrippacking DE-627 ger DE-627 rakwb eng 510 DNB QA 10000 AVZ rvk 54.00 bkl Scheithauer, Guntram verfasserin aut Upper bounds for heuristic approaches to the strip packing problem 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5. Nutzungsrecht: 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA. performance ratio strip packing problem cutting and packing Algorithms Heuristic Studies Operations research Packing problem Buchwald, Torsten oth Enthalten in International transactions in operational research Oxford : Wiley, 1994 23(2016), 1-2, Seite 93-119 (DE-627)182525775 (DE-600)1213721-2 (DE-576)045288984 0969-6016 nnns volume:23 year:2016 number:1-2 pages:93-119 http://dx.doi.org/10.1111/itor.12100 Volltext http://onlinelibrary.wiley.com/doi/10.1111/itor.12100/abstract http://search.proquest.com/docview/1729143725 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_26 GBV_ILN_4126 QA 10000 54.00 AVZ AR 23 2016 1-2 93-119 |
allfields_unstemmed |
10.1111/itor.12100 doi PQ20160212 (DE-627)OLC197130400X (DE-599)GBVOLC197130400X (PRQ)c2160-630dd35ecb4fc00280bc1e5c6b4e4b9639140d876148051e36eaf1f609bbe9830 (KEY)0238234220160000023000100093upperboundsforheuristicapproachestothestrippacking DE-627 ger DE-627 rakwb eng 510 DNB QA 10000 AVZ rvk 54.00 bkl Scheithauer, Guntram verfasserin aut Upper bounds for heuristic approaches to the strip packing problem 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5. Nutzungsrecht: 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA. performance ratio strip packing problem cutting and packing Algorithms Heuristic Studies Operations research Packing problem Buchwald, Torsten oth Enthalten in International transactions in operational research Oxford : Wiley, 1994 23(2016), 1-2, Seite 93-119 (DE-627)182525775 (DE-600)1213721-2 (DE-576)045288984 0969-6016 nnns volume:23 year:2016 number:1-2 pages:93-119 http://dx.doi.org/10.1111/itor.12100 Volltext http://onlinelibrary.wiley.com/doi/10.1111/itor.12100/abstract http://search.proquest.com/docview/1729143725 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_26 GBV_ILN_4126 QA 10000 54.00 AVZ AR 23 2016 1-2 93-119 |
allfieldsGer |
10.1111/itor.12100 doi PQ20160212 (DE-627)OLC197130400X (DE-599)GBVOLC197130400X (PRQ)c2160-630dd35ecb4fc00280bc1e5c6b4e4b9639140d876148051e36eaf1f609bbe9830 (KEY)0238234220160000023000100093upperboundsforheuristicapproachestothestrippacking DE-627 ger DE-627 rakwb eng 510 DNB QA 10000 AVZ rvk 54.00 bkl Scheithauer, Guntram verfasserin aut Upper bounds for heuristic approaches to the strip packing problem 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5. Nutzungsrecht: 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA. performance ratio strip packing problem cutting and packing Algorithms Heuristic Studies Operations research Packing problem Buchwald, Torsten oth Enthalten in International transactions in operational research Oxford : Wiley, 1994 23(2016), 1-2, Seite 93-119 (DE-627)182525775 (DE-600)1213721-2 (DE-576)045288984 0969-6016 nnns volume:23 year:2016 number:1-2 pages:93-119 http://dx.doi.org/10.1111/itor.12100 Volltext http://onlinelibrary.wiley.com/doi/10.1111/itor.12100/abstract http://search.proquest.com/docview/1729143725 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_26 GBV_ILN_4126 QA 10000 54.00 AVZ AR 23 2016 1-2 93-119 |
allfieldsSound |
10.1111/itor.12100 doi PQ20160212 (DE-627)OLC197130400X (DE-599)GBVOLC197130400X (PRQ)c2160-630dd35ecb4fc00280bc1e5c6b4e4b9639140d876148051e36eaf1f609bbe9830 (KEY)0238234220160000023000100093upperboundsforheuristicapproachestothestrippacking DE-627 ger DE-627 rakwb eng 510 DNB QA 10000 AVZ rvk 54.00 bkl Scheithauer, Guntram verfasserin aut Upper bounds for heuristic approaches to the strip packing problem 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5. Nutzungsrecht: 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA. performance ratio strip packing problem cutting and packing Algorithms Heuristic Studies Operations research Packing problem Buchwald, Torsten oth Enthalten in International transactions in operational research Oxford : Wiley, 1994 23(2016), 1-2, Seite 93-119 (DE-627)182525775 (DE-600)1213721-2 (DE-576)045288984 0969-6016 nnns volume:23 year:2016 number:1-2 pages:93-119 http://dx.doi.org/10.1111/itor.12100 Volltext http://onlinelibrary.wiley.com/doi/10.1111/itor.12100/abstract http://search.proquest.com/docview/1729143725 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_26 GBV_ILN_4126 QA 10000 54.00 AVZ AR 23 2016 1-2 93-119 |
language |
English |
source |
Enthalten in International transactions in operational research 23(2016), 1-2, Seite 93-119 volume:23 year:2016 number:1-2 pages:93-119 |
sourceStr |
Enthalten in International transactions in operational research 23(2016), 1-2, Seite 93-119 volume:23 year:2016 number:1-2 pages:93-119 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
performance ratio strip packing problem cutting and packing Algorithms Heuristic Studies Operations research Packing problem |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
International transactions in operational research |
authorswithroles_txt_mv |
Scheithauer, Guntram @@aut@@ Buchwald, Torsten @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
182525775 |
dewey-sort |
3510 |
id |
OLC197130400X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197130400X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215184527.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160212s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/itor.12100</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197130400X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197130400X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2160-630dd35ecb4fc00280bc1e5c6b4e4b9639140d876148051e36eaf1f609bbe9830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0238234220160000023000100093upperboundsforheuristicapproachestothestrippacking</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QA 10000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scheithauer, Guntram</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Upper bounds for heuristic approaches to the strip packing problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">performance ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strip packing problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cutting and packing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Packing problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buchwald, Torsten</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International transactions in operational research</subfield><subfield code="d">Oxford : Wiley, 1994</subfield><subfield code="g">23(2016), 1-2, Seite 93-119</subfield><subfield code="w">(DE-627)182525775</subfield><subfield code="w">(DE-600)1213721-2</subfield><subfield code="w">(DE-576)045288984</subfield><subfield code="x">0969-6016</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1-2</subfield><subfield code="g">pages:93-119</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1111/itor.12100</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1111/itor.12100/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1729143725</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">QA 10000</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2016</subfield><subfield code="e">1-2</subfield><subfield code="h">93-119</subfield></datafield></record></collection>
|
author |
Scheithauer, Guntram |
spellingShingle |
Scheithauer, Guntram ddc 510 rvk QA 10000 bkl 54.00 misc performance ratio misc strip packing problem misc cutting and packing misc Algorithms misc Heuristic misc Studies misc Operations research misc Packing problem Upper bounds for heuristic approaches to the strip packing problem |
authorStr |
Scheithauer, Guntram |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182525775 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0969-6016 |
topic_title |
510 DNB QA 10000 AVZ rvk 54.00 bkl Upper bounds for heuristic approaches to the strip packing problem performance ratio strip packing problem cutting and packing Algorithms Heuristic Studies Operations research Packing problem |
topic |
ddc 510 rvk QA 10000 bkl 54.00 misc performance ratio misc strip packing problem misc cutting and packing misc Algorithms misc Heuristic misc Studies misc Operations research misc Packing problem |
topic_unstemmed |
ddc 510 rvk QA 10000 bkl 54.00 misc performance ratio misc strip packing problem misc cutting and packing misc Algorithms misc Heuristic misc Studies misc Operations research misc Packing problem |
topic_browse |
ddc 510 rvk QA 10000 bkl 54.00 misc performance ratio misc strip packing problem misc cutting and packing misc Algorithms misc Heuristic misc Studies misc Operations research misc Packing problem |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t b tb |
hierarchy_parent_title |
International transactions in operational research |
hierarchy_parent_id |
182525775 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
International transactions in operational research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182525775 (DE-600)1213721-2 (DE-576)045288984 |
title |
Upper bounds for heuristic approaches to the strip packing problem |
ctrlnum |
(DE-627)OLC197130400X (DE-599)GBVOLC197130400X (PRQ)c2160-630dd35ecb4fc00280bc1e5c6b4e4b9639140d876148051e36eaf1f609bbe9830 (KEY)0238234220160000023000100093upperboundsforheuristicapproachestothestrippacking |
title_full |
Upper bounds for heuristic approaches to the strip packing problem |
author_sort |
Scheithauer, Guntram |
journal |
International transactions in operational research |
journalStr |
International transactions in operational research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
93 |
author_browse |
Scheithauer, Guntram |
container_volume |
23 |
class |
510 DNB QA 10000 AVZ rvk 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Scheithauer, Guntram |
doi_str_mv |
10.1111/itor.12100 |
dewey-full |
510 |
title_sort |
upper bounds for heuristic approaches to the strip packing problem |
title_auth |
Upper bounds for heuristic approaches to the strip packing problem |
abstract |
We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5. |
abstractGer |
We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5. |
abstract_unstemmed |
We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW GBV_ILN_26 GBV_ILN_4126 |
container_issue |
1-2 |
title_short |
Upper bounds for heuristic approaches to the strip packing problem |
url |
http://dx.doi.org/10.1111/itor.12100 http://onlinelibrary.wiley.com/doi/10.1111/itor.12100/abstract http://search.proquest.com/docview/1729143725 |
remote_bool |
false |
author2 |
Buchwald, Torsten |
author2Str |
Buchwald, Torsten |
ppnlink |
182525775 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1111/itor.12100 |
up_date |
2024-07-03T18:59:20.326Z |
_version_ |
1803585491123044352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197130400X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215184527.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160212s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1111/itor.12100</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197130400X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197130400X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2160-630dd35ecb4fc00280bc1e5c6b4e4b9639140d876148051e36eaf1f609bbe9830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0238234220160000023000100093upperboundsforheuristicapproachestothestrippacking</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QA 10000</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scheithauer, Guntram</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Upper bounds for heuristic approaches to the strip packing problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider the 2D and 3D strip packing problem (SPP): given a set of rectangular items and a strip, find the minimal height needed to pack all items. Rotation of the items is not permitted. We present an algorithm for the 2D SPP, which improves the packing of the well‐known FFDH heuristic and state theoretical results for this algorithm. Furthermore, we prove new upper bounds for the 3D SPP in special cases. Moreover, we present an implementation of the FFDH heuristic for the 3D case, which is used to construct a new algorithm, called COMB‐3D heuristic, with absolute performance ratio of at most 5. Based on the new algorithm, we also prove a general upper bound for the optimal height, which depends on the continuous lower bound and the maximum height lower bound, and we show that the combination of both lower bounds also has an absolute worst‐case performance ratio of at most 5.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: 2014 The Authors. International Transactions in Operational Research © 2014 International Federation of Operational Research Societies Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford, OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">performance ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">strip packing problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cutting and packing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Studies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Packing problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buchwald, Torsten</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International transactions in operational research</subfield><subfield code="d">Oxford : Wiley, 1994</subfield><subfield code="g">23(2016), 1-2, Seite 93-119</subfield><subfield code="w">(DE-627)182525775</subfield><subfield code="w">(DE-600)1213721-2</subfield><subfield code="w">(DE-576)045288984</subfield><subfield code="x">0969-6016</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1-2</subfield><subfield code="g">pages:93-119</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1111/itor.12100</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1111/itor.12100/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1729143725</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">QA 10000</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2016</subfield><subfield code="e">1-2</subfield><subfield code="h">93-119</subfield></datafield></record></collection>
|
score |
7.40108 |