Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk
In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random wal...
Ausführliche Beschreibung
Autor*in: |
Korus, Pawel [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE signal processing letters - Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5, New York, NY, 19XX, 23(2016), 1, Seite 169-173 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2016 ; number:1 ; pages:169-173 |
Links: |
---|
DOI / URN: |
10.1109/LSP.2015.2507598 |
---|
Katalog-ID: |
OLC1971305448 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1971305448 | ||
003 | DE-627 | ||
005 | 20220216211336.0 | ||
007 | tu | ||
008 | 160212s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/LSP.2015.2507598 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1971305448 | ||
035 | |a (DE-599)GBVOLC1971305448 | ||
035 | |a (PRQ)c1633-ef2301bc63f2a379a4c21b7c9a2dc24c8cf634a12b90e099cc26154e1c93a88d0 | ||
035 | |a (KEY)02390256u20160000023000100169improvedtamperinglocalizationindigitalimageforensi | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Korus, Pawel |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior. | ||
650 | 4 | |a Forensics | |
650 | 4 | |a tampering localization | |
650 | 4 | |a Organizations | |
650 | 4 | |a Detectors | |
650 | 4 | |a maximal entropy random walk | |
650 | 4 | |a Visualization | |
650 | 4 | |a JPEG splicing | |
650 | 4 | |a Splicing | |
650 | 4 | |a visual saliency | |
650 | 4 | |a Digital image forensics | |
650 | 4 | |a first-digit features | |
650 | 4 | |a Entropy | |
650 | 4 | |a Digital images | |
700 | 1 | |a Huang, Jiwu |4 oth | |
773 | 0 | 8 | |i Enthalten in |a Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 |t IEEE signal processing letters |d New York, NY, 19XX |g 23(2016), 1, Seite 169-173 |w (DE-627)182273075 |w (DE-600)916964-7 |x 1070-9908 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2016 |g number:1 |g pages:169-173 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/LSP.2015.2507598 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353154 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1750113149 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
936 | b | k | |a 53.00 |q AVZ |
951 | |a AR | ||
952 | |d 23 |j 2016 |e 1 |h 169-173 |
author_variant |
p k pk |
---|---|
matchkey_str |
article:10709908:2016----::mrvdaprnlclztoidgtlmgfrnisaeom |
hierarchy_sort_str |
2016 |
bklnumber |
53.00 |
publishDate |
2016 |
allfields |
10.1109/LSP.2015.2507598 doi PQ20160430 (DE-627)OLC1971305448 (DE-599)GBVOLC1971305448 (PRQ)c1633-ef2301bc63f2a379a4c21b7c9a2dc24c8cf634a12b90e099cc26154e1c93a88d0 (KEY)02390256u20160000023000100169improvedtamperinglocalizationindigitalimageforensi DE-627 ger DE-627 rakwb eng 53.00 bkl Korus, Pawel verfasserin aut Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior. Forensics tampering localization Organizations Detectors maximal entropy random walk Visualization JPEG splicing Splicing visual saliency Digital image forensics first-digit features Entropy Digital images Huang, Jiwu oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 23(2016), 1, Seite 169-173 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:23 year:2016 number:1 pages:169-173 http://dx.doi.org/10.1109/LSP.2015.2507598 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353154 http://search.proquest.com/docview/1750113149 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 23 2016 1 169-173 |
spelling |
10.1109/LSP.2015.2507598 doi PQ20160430 (DE-627)OLC1971305448 (DE-599)GBVOLC1971305448 (PRQ)c1633-ef2301bc63f2a379a4c21b7c9a2dc24c8cf634a12b90e099cc26154e1c93a88d0 (KEY)02390256u20160000023000100169improvedtamperinglocalizationindigitalimageforensi DE-627 ger DE-627 rakwb eng 53.00 bkl Korus, Pawel verfasserin aut Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior. Forensics tampering localization Organizations Detectors maximal entropy random walk Visualization JPEG splicing Splicing visual saliency Digital image forensics first-digit features Entropy Digital images Huang, Jiwu oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 23(2016), 1, Seite 169-173 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:23 year:2016 number:1 pages:169-173 http://dx.doi.org/10.1109/LSP.2015.2507598 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353154 http://search.proquest.com/docview/1750113149 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 23 2016 1 169-173 |
allfields_unstemmed |
10.1109/LSP.2015.2507598 doi PQ20160430 (DE-627)OLC1971305448 (DE-599)GBVOLC1971305448 (PRQ)c1633-ef2301bc63f2a379a4c21b7c9a2dc24c8cf634a12b90e099cc26154e1c93a88d0 (KEY)02390256u20160000023000100169improvedtamperinglocalizationindigitalimageforensi DE-627 ger DE-627 rakwb eng 53.00 bkl Korus, Pawel verfasserin aut Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior. Forensics tampering localization Organizations Detectors maximal entropy random walk Visualization JPEG splicing Splicing visual saliency Digital image forensics first-digit features Entropy Digital images Huang, Jiwu oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 23(2016), 1, Seite 169-173 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:23 year:2016 number:1 pages:169-173 http://dx.doi.org/10.1109/LSP.2015.2507598 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353154 http://search.proquest.com/docview/1750113149 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 23 2016 1 169-173 |
allfieldsGer |
10.1109/LSP.2015.2507598 doi PQ20160430 (DE-627)OLC1971305448 (DE-599)GBVOLC1971305448 (PRQ)c1633-ef2301bc63f2a379a4c21b7c9a2dc24c8cf634a12b90e099cc26154e1c93a88d0 (KEY)02390256u20160000023000100169improvedtamperinglocalizationindigitalimageforensi DE-627 ger DE-627 rakwb eng 53.00 bkl Korus, Pawel verfasserin aut Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior. Forensics tampering localization Organizations Detectors maximal entropy random walk Visualization JPEG splicing Splicing visual saliency Digital image forensics first-digit features Entropy Digital images Huang, Jiwu oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 23(2016), 1, Seite 169-173 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:23 year:2016 number:1 pages:169-173 http://dx.doi.org/10.1109/LSP.2015.2507598 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353154 http://search.proquest.com/docview/1750113149 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 23 2016 1 169-173 |
allfieldsSound |
10.1109/LSP.2015.2507598 doi PQ20160430 (DE-627)OLC1971305448 (DE-599)GBVOLC1971305448 (PRQ)c1633-ef2301bc63f2a379a4c21b7c9a2dc24c8cf634a12b90e099cc26154e1c93a88d0 (KEY)02390256u20160000023000100169improvedtamperinglocalizationindigitalimageforensi DE-627 ger DE-627 rakwb eng 53.00 bkl Korus, Pawel verfasserin aut Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior. Forensics tampering localization Organizations Detectors maximal entropy random walk Visualization JPEG splicing Splicing visual saliency Digital image forensics first-digit features Entropy Digital images Huang, Jiwu oth Enthalten in Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5 IEEE signal processing letters New York, NY, 19XX 23(2016), 1, Seite 169-173 (DE-627)182273075 (DE-600)916964-7 1070-9908 nnns volume:23 year:2016 number:1 pages:169-173 http://dx.doi.org/10.1109/LSP.2015.2507598 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353154 http://search.proquest.com/docview/1750113149 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 53.00 AVZ AR 23 2016 1 169-173 |
language |
English |
source |
Enthalten in IEEE signal processing letters 23(2016), 1, Seite 169-173 volume:23 year:2016 number:1 pages:169-173 |
sourceStr |
Enthalten in IEEE signal processing letters 23(2016), 1, Seite 169-173 volume:23 year:2016 number:1 pages:169-173 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Forensics tampering localization Organizations Detectors maximal entropy random walk Visualization JPEG splicing Splicing visual saliency Digital image forensics first-digit features Entropy Digital images |
isfreeaccess_bool |
false |
container_title |
IEEE signal processing letters |
authorswithroles_txt_mv |
Korus, Pawel @@aut@@ Huang, Jiwu @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
182273075 |
id |
OLC1971305448 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1971305448</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216211336.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160212s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/LSP.2015.2507598</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1971305448</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1971305448</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1633-ef2301bc63f2a379a4c21b7c9a2dc24c8cf634a12b90e099cc26154e1c93a88d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)02390256u20160000023000100169improvedtamperinglocalizationindigitalimageforensi</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Korus, Pawel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forensics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tampering localization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximal entropy random walk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">JPEG splicing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Splicing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">visual saliency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital image forensics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">first-digit features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital images</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jiwu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5</subfield><subfield code="t">IEEE signal processing letters</subfield><subfield code="d">New York, NY, 19XX</subfield><subfield code="g">23(2016), 1, Seite 169-173</subfield><subfield code="w">(DE-627)182273075</subfield><subfield code="w">(DE-600)916964-7</subfield><subfield code="x">1070-9908</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:169-173</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/LSP.2015.2507598</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353154</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1750113149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">169-173</subfield></datafield></record></collection>
|
author |
Korus, Pawel |
spellingShingle |
Korus, Pawel bkl 53.00 misc Forensics misc tampering localization misc Organizations misc Detectors misc maximal entropy random walk misc Visualization misc JPEG splicing misc Splicing misc visual saliency misc Digital image forensics misc first-digit features misc Entropy misc Digital images Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk |
authorStr |
Korus, Pawel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182273075 |
format |
Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1070-9908 |
topic_title |
53.00 bkl Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk Forensics tampering localization Organizations Detectors maximal entropy random walk Visualization JPEG splicing Splicing visual saliency Digital image forensics first-digit features Entropy Digital images |
topic |
bkl 53.00 misc Forensics misc tampering localization misc Organizations misc Detectors misc maximal entropy random walk misc Visualization misc JPEG splicing misc Splicing misc visual saliency misc Digital image forensics misc first-digit features misc Entropy misc Digital images |
topic_unstemmed |
bkl 53.00 misc Forensics misc tampering localization misc Organizations misc Detectors misc maximal entropy random walk misc Visualization misc JPEG splicing misc Splicing misc visual saliency misc Digital image forensics misc first-digit features misc Entropy misc Digital images |
topic_browse |
bkl 53.00 misc Forensics misc tampering localization misc Organizations misc Detectors misc maximal entropy random walk misc Visualization misc JPEG splicing misc Splicing misc visual saliency misc Digital image forensics misc first-digit features misc Entropy misc Digital images |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
j h jh |
hierarchy_parent_title |
IEEE signal processing letters |
hierarchy_parent_id |
182273075 |
hierarchy_top_title |
IEEE signal processing letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182273075 (DE-600)916964-7 |
title |
Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk |
ctrlnum |
(DE-627)OLC1971305448 (DE-599)GBVOLC1971305448 (PRQ)c1633-ef2301bc63f2a379a4c21b7c9a2dc24c8cf634a12b90e099cc26154e1c93a88d0 (KEY)02390256u20160000023000100169improvedtamperinglocalizationindigitalimageforensi |
title_full |
Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk |
author_sort |
Korus, Pawel |
journal |
IEEE signal processing letters |
journalStr |
IEEE signal processing letters |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
169 |
author_browse |
Korus, Pawel |
container_volume |
23 |
class |
53.00 bkl |
format_se |
Aufsätze |
author-letter |
Korus, Pawel |
doi_str_mv |
10.1109/LSP.2015.2507598 |
title_sort |
improved tampering localization in digital image forensics based on maximal entropy random walk |
title_auth |
Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk |
abstract |
In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior. |
abstractGer |
In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior. |
abstract_unstemmed |
In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
1 |
title_short |
Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk |
url |
http://dx.doi.org/10.1109/LSP.2015.2507598 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353154 http://search.proquest.com/docview/1750113149 |
remote_bool |
false |
author2 |
Huang, Jiwu |
author2Str |
Huang, Jiwu |
ppnlink |
182273075 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1109/LSP.2015.2507598 |
up_date |
2024-07-03T18:59:42.432Z |
_version_ |
1803585514302865408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1971305448</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220216211336.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160212s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/LSP.2015.2507598</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1971305448</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1971305448</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c1633-ef2301bc63f2a379a4c21b7c9a2dc24c8cf634a12b90e099cc26154e1c93a88d0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)02390256u20160000023000100169improvedtamperinglocalizationindigitalimageforensi</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Korus, Pawel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improved Tampering Localization in Digital Image Forensics Based on Maximal Entropy Random Walk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper we propose to use maximal entropy random walk on a graph for tampering localization in digital image forensics. Our approach serves as an additional post-processing step after conventional sliding-window analysis with a forensic detector. Strong localization property of this random walk will highlight important regions and attenuate the background - even for noisy response maps. Our evaluation shows that the proposed method can significantly outperform both the commonly used threshold-based decision, and the recently proposed optimization-based approach with a Markovian prior.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forensics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tampering localization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">maximal entropy random walk</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visualization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">JPEG splicing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Splicing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">visual saliency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital image forensics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">first-digit features</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital images</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jiwu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Institute of Electrical and Electronics Engineers ; ID: gnd/1692-5</subfield><subfield code="t">IEEE signal processing letters</subfield><subfield code="d">New York, NY, 19XX</subfield><subfield code="g">23(2016), 1, Seite 169-173</subfield><subfield code="w">(DE-627)182273075</subfield><subfield code="w">(DE-600)916964-7</subfield><subfield code="x">1070-9908</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:169-173</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/LSP.2015.2507598</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7353154</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1750113149</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">169-173</subfield></datafield></record></collection>
|
score |
7.398863 |