Coherent-state overcompleteness, path integrals, and weak values
In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single p...
Ausführliche Beschreibung
Autor*in: |
Parisio, Fernando [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © AIP Publishing LLC |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical physics - Melville, NY : American Institute of Physics, 1960, 57(2016), 3, Seite 1 |
---|---|
Übergeordnetes Werk: |
volume:57 ; year:2016 ; number:3 ; pages:1 |
Links: |
---|
DOI / URN: |
10.1063/1.4943014 |
---|
Katalog-ID: |
OLC1972496042 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1972496042 | ||
003 | DE-627 | ||
005 | 20220221225707.0 | ||
007 | tu | ||
008 | 160427s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1063/1.4943014 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1972496042 | ||
035 | |a (DE-599)GBVOLC1972496042 | ||
035 | |a (PRQ)a1537-65cedf53c4602ad57774b217df5372e11050151d8cadb84020184b351ef8daec0 | ||
035 | |a (KEY)0000548720160000057000300001coherentstateovercompletenesspathintegralsandweakv | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q DNB |
084 | |a UA 4660 |q AVZ |2 rvk | ||
100 | 1 | |a Parisio, Fernando |e verfasserin |4 aut | |
245 | 1 | 0 | |a Coherent-state overcompleteness, path integrals, and weak values |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit. | ||
540 | |a Nutzungsrecht: © AIP Publishing LLC | ||
650 | 4 | |a Quantum physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Hilbert space | |
650 | 4 | |a Quantum Physics | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical physics |d Melville, NY : American Institute of Physics, 1960 |g 57(2016), 3, Seite 1 |w (DE-627)129549703 |w (DE-600)219135-0 |w (DE-576)01500290X |x 0022-2488 |7 nnns |
773 | 1 | 8 | |g volume:57 |g year:2016 |g number:3 |g pages:1 |
856 | 4 | 1 | |u http://dx.doi.org/10.1063/1.4943014 |3 Volltext |
856 | 4 | 2 | |u http://dx.doi.org/10.1063/1.4943014 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1781336208 |
856 | 4 | 2 | |u http://arxiv.org/abs/1403.3033 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2279 | ||
936 | r | v | |a UA 4660 |
951 | |a AR | ||
952 | |d 57 |j 2016 |e 3 |h 1 |
author_variant |
f p fp |
---|---|
matchkey_str |
article:00222488:2016----::oeetttoecmltnsptitg |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1063/1.4943014 doi PQ20160430 (DE-627)OLC1972496042 (DE-599)GBVOLC1972496042 (PRQ)a1537-65cedf53c4602ad57774b217df5372e11050151d8cadb84020184b351ef8daec0 (KEY)0000548720160000057000300001coherentstateovercompletenesspathintegralsandweakv DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Parisio, Fernando verfasserin aut Coherent-state overcompleteness, path integrals, and weak values 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit. Nutzungsrecht: © AIP Publishing LLC Quantum physics Quantum theory Hilbert space Quantum Physics Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 57(2016), 3, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:57 year:2016 number:3 pages:1 http://dx.doi.org/10.1063/1.4943014 Volltext http://dx.doi.org/10.1063/1.4943014 http://search.proquest.com/docview/1781336208 http://arxiv.org/abs/1403.3033 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 57 2016 3 1 |
spelling |
10.1063/1.4943014 doi PQ20160430 (DE-627)OLC1972496042 (DE-599)GBVOLC1972496042 (PRQ)a1537-65cedf53c4602ad57774b217df5372e11050151d8cadb84020184b351ef8daec0 (KEY)0000548720160000057000300001coherentstateovercompletenesspathintegralsandweakv DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Parisio, Fernando verfasserin aut Coherent-state overcompleteness, path integrals, and weak values 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit. Nutzungsrecht: © AIP Publishing LLC Quantum physics Quantum theory Hilbert space Quantum Physics Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 57(2016), 3, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:57 year:2016 number:3 pages:1 http://dx.doi.org/10.1063/1.4943014 Volltext http://dx.doi.org/10.1063/1.4943014 http://search.proquest.com/docview/1781336208 http://arxiv.org/abs/1403.3033 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 57 2016 3 1 |
allfields_unstemmed |
10.1063/1.4943014 doi PQ20160430 (DE-627)OLC1972496042 (DE-599)GBVOLC1972496042 (PRQ)a1537-65cedf53c4602ad57774b217df5372e11050151d8cadb84020184b351ef8daec0 (KEY)0000548720160000057000300001coherentstateovercompletenesspathintegralsandweakv DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Parisio, Fernando verfasserin aut Coherent-state overcompleteness, path integrals, and weak values 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit. Nutzungsrecht: © AIP Publishing LLC Quantum physics Quantum theory Hilbert space Quantum Physics Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 57(2016), 3, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:57 year:2016 number:3 pages:1 http://dx.doi.org/10.1063/1.4943014 Volltext http://dx.doi.org/10.1063/1.4943014 http://search.proquest.com/docview/1781336208 http://arxiv.org/abs/1403.3033 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 57 2016 3 1 |
allfieldsGer |
10.1063/1.4943014 doi PQ20160430 (DE-627)OLC1972496042 (DE-599)GBVOLC1972496042 (PRQ)a1537-65cedf53c4602ad57774b217df5372e11050151d8cadb84020184b351ef8daec0 (KEY)0000548720160000057000300001coherentstateovercompletenesspathintegralsandweakv DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Parisio, Fernando verfasserin aut Coherent-state overcompleteness, path integrals, and weak values 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit. Nutzungsrecht: © AIP Publishing LLC Quantum physics Quantum theory Hilbert space Quantum Physics Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 57(2016), 3, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:57 year:2016 number:3 pages:1 http://dx.doi.org/10.1063/1.4943014 Volltext http://dx.doi.org/10.1063/1.4943014 http://search.proquest.com/docview/1781336208 http://arxiv.org/abs/1403.3033 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 57 2016 3 1 |
allfieldsSound |
10.1063/1.4943014 doi PQ20160430 (DE-627)OLC1972496042 (DE-599)GBVOLC1972496042 (PRQ)a1537-65cedf53c4602ad57774b217df5372e11050151d8cadb84020184b351ef8daec0 (KEY)0000548720160000057000300001coherentstateovercompletenesspathintegralsandweakv DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Parisio, Fernando verfasserin aut Coherent-state overcompleteness, path integrals, and weak values 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit. Nutzungsrecht: © AIP Publishing LLC Quantum physics Quantum theory Hilbert space Quantum Physics Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 57(2016), 3, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:57 year:2016 number:3 pages:1 http://dx.doi.org/10.1063/1.4943014 Volltext http://dx.doi.org/10.1063/1.4943014 http://search.proquest.com/docview/1781336208 http://arxiv.org/abs/1403.3033 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 57 2016 3 1 |
language |
English |
source |
Enthalten in Journal of mathematical physics 57(2016), 3, Seite 1 volume:57 year:2016 number:3 pages:1 |
sourceStr |
Enthalten in Journal of mathematical physics 57(2016), 3, Seite 1 volume:57 year:2016 number:3 pages:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum physics Quantum theory Hilbert space Quantum Physics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical physics |
authorswithroles_txt_mv |
Parisio, Fernando @@aut@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129549703 |
dewey-sort |
3530 |
id |
OLC1972496042 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1972496042</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221225707.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4943014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1972496042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1972496042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1537-65cedf53c4602ad57774b217df5372e11050151d8cadb84020184b351ef8daec0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0000548720160000057000300001coherentstateovercompletenesspathintegralsandweakv</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 4660</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parisio, Fernando</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coherent-state overcompleteness, path integrals, and weak values</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © AIP Publishing LLC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical physics</subfield><subfield code="d">Melville, NY : American Institute of Physics, 1960</subfield><subfield code="g">57(2016), 3, Seite 1</subfield><subfield code="w">(DE-627)129549703</subfield><subfield code="w">(DE-600)219135-0</subfield><subfield code="w">(DE-576)01500290X</subfield><subfield code="x">0022-2488</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4943014</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1063/1.4943014</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1781336208</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1403.3033</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 4660</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="h">1</subfield></datafield></record></collection>
|
author |
Parisio, Fernando |
spellingShingle |
Parisio, Fernando ddc 530 rvk UA 4660 misc Quantum physics misc Quantum theory misc Hilbert space misc Quantum Physics Coherent-state overcompleteness, path integrals, and weak values |
authorStr |
Parisio, Fernando |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129549703 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2488 |
topic_title |
530 510 DNB UA 4660 AVZ rvk Coherent-state overcompleteness, path integrals, and weak values Quantum physics Quantum theory Hilbert space Quantum Physics |
topic |
ddc 530 rvk UA 4660 misc Quantum physics misc Quantum theory misc Hilbert space misc Quantum Physics |
topic_unstemmed |
ddc 530 rvk UA 4660 misc Quantum physics misc Quantum theory misc Hilbert space misc Quantum Physics |
topic_browse |
ddc 530 rvk UA 4660 misc Quantum physics misc Quantum theory misc Hilbert space misc Quantum Physics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical physics |
hierarchy_parent_id |
129549703 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Journal of mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X |
title |
Coherent-state overcompleteness, path integrals, and weak values |
ctrlnum |
(DE-627)OLC1972496042 (DE-599)GBVOLC1972496042 (PRQ)a1537-65cedf53c4602ad57774b217df5372e11050151d8cadb84020184b351ef8daec0 (KEY)0000548720160000057000300001coherentstateovercompletenesspathintegralsandweakv |
title_full |
Coherent-state overcompleteness, path integrals, and weak values |
author_sort |
Parisio, Fernando |
journal |
Journal of mathematical physics |
journalStr |
Journal of mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Parisio, Fernando |
container_volume |
57 |
class |
530 510 DNB UA 4660 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Parisio, Fernando |
doi_str_mv |
10.1063/1.4943014 |
dewey-full |
530 510 |
title_sort |
coherent-state overcompleteness, path integrals, and weak values |
title_auth |
Coherent-state overcompleteness, path integrals, and weak values |
abstract |
In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit. |
abstractGer |
In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit. |
abstract_unstemmed |
In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 |
container_issue |
3 |
title_short |
Coherent-state overcompleteness, path integrals, and weak values |
url |
http://dx.doi.org/10.1063/1.4943014 http://search.proquest.com/docview/1781336208 http://arxiv.org/abs/1403.3033 |
remote_bool |
false |
ppnlink |
129549703 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1063/1.4943014 |
up_date |
2024-07-03T23:21:01.626Z |
_version_ |
1803601955130441728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1972496042</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221225707.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4943014</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1972496042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1972496042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1537-65cedf53c4602ad57774b217df5372e11050151d8cadb84020184b351ef8daec0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0000548720160000057000300001coherentstateovercompletenesspathintegralsandweakv</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 4660</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Parisio, Fernando</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coherent-state overcompleteness, path integrals, and weak values</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In the Hilbert space of a quantum particle the standard coherent-state resolution of unity is written in terms of a phase-space integration of the outer product z z . Because no pair of coherent states is orthogonal, one can represent the closure relation in non-standard ways, in terms of a single phase-space integration of the “unlike” outer product z ′ z , z′≠z. We show that all known representations of this kind have a common ground and that our reasoning extends to spin coherent states. These unlike identities make it possible to write formal expressions for a phase-space path integral, where the role of the Hamiltonian H is played by a weak energy value H w e a k . Therefore, in this context, we can speak of weak values without any mention to measurements. The quantity H w e a k appears as the ruler of the phase-space dynamics in the semiclassical limit.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © AIP Publishing LLC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical physics</subfield><subfield code="d">Melville, NY : American Institute of Physics, 1960</subfield><subfield code="g">57(2016), 3, Seite 1</subfield><subfield code="w">(DE-627)129549703</subfield><subfield code="w">(DE-600)219135-0</subfield><subfield code="w">(DE-576)01500290X</subfield><subfield code="x">0022-2488</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4943014</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1063/1.4943014</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1781336208</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1403.3033</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 4660</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="h">1</subfield></datafield></record></collection>
|
score |
7.4013996 |