Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions
Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter...
Ausführliche Beschreibung
Autor*in: |
Albert, Jay M [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geophysical research letters - Washington, DC : Union, 1974, 43(2016), 6, Seite 2381-2388 |
---|---|
Übergeordnetes Werk: |
volume:43 ; year:2016 ; number:6 ; pages:2381-2388 |
Links: |
---|
DOI / URN: |
10.1002/2016GL067938 |
---|
Katalog-ID: |
OLC1972637983 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1972637983 | ||
003 | DE-627 | ||
005 | 20220223170635.0 | ||
007 | tu | ||
008 | 160427s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2016GL067938 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1972637983 | ||
035 | |a (DE-599)GBVOLC1972637983 | ||
035 | |a (PRQ)p950-c2e8cac9d0bf55482167c16969a7c6897db326098f11ba6c507e276e5e4101e90 | ||
035 | |a (KEY)0026932820160000043000602381quasilinearsimulationsofinnerradiationbeltelectron | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a 38.70 |2 bkl | ||
100 | 1 | |a Albert, Jay M |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves | ||
540 | |a Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. | ||
650 | 4 | |a pitch angle distributions | |
700 | 1 | |a Starks, Michael J |4 oth | |
700 | 1 | |a Horne, Richard B |4 oth | |
700 | 1 | |a Meredith, Nigel P |4 oth | |
700 | 1 | |a Glauert, Sarah A |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Geophysical research letters |d Washington, DC : Union, 1974 |g 43(2016), 6, Seite 2381-2388 |w (DE-627)129095109 |w (DE-600)7403-2 |w (DE-576)01443122X |x 0094-8276 |7 nnns |
773 | 1 | 8 | |g volume:43 |g year:2016 |g number:6 |g pages:2381-2388 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2016GL067938 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2016GL067938/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1782348387 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_154 | ||
912 | |a GBV_ILN_601 | ||
912 | |a GBV_ILN_2279 | ||
936 | b | k | |a 38.70 |q AVZ |
951 | |a AR | ||
952 | |d 43 |j 2016 |e 6 |h 2381-2388 |
author_variant |
j m a jm jma |
---|---|
matchkey_str |
article:00948276:2016----::uslnasmltosfnerdainetlcrnicage |
hierarchy_sort_str |
2016 |
bklnumber |
38.70 |
publishDate |
2016 |
allfields |
10.1002/2016GL067938 doi PQ20160430 (DE-627)OLC1972637983 (DE-599)GBVOLC1972637983 (PRQ)p950-c2e8cac9d0bf55482167c16969a7c6897db326098f11ba6c507e276e5e4101e90 (KEY)0026932820160000043000602381quasilinearsimulationsofinnerradiationbeltelectron DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Albert, Jay M verfasserin aut Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. pitch angle distributions Starks, Michael J oth Horne, Richard B oth Meredith, Nigel P oth Glauert, Sarah A oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 43(2016), 6, Seite 2381-2388 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:43 year:2016 number:6 pages:2381-2388 http://dx.doi.org/10.1002/2016GL067938 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL067938/abstract http://search.proquest.com/docview/1782348387 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 43 2016 6 2381-2388 |
spelling |
10.1002/2016GL067938 doi PQ20160430 (DE-627)OLC1972637983 (DE-599)GBVOLC1972637983 (PRQ)p950-c2e8cac9d0bf55482167c16969a7c6897db326098f11ba6c507e276e5e4101e90 (KEY)0026932820160000043000602381quasilinearsimulationsofinnerradiationbeltelectron DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Albert, Jay M verfasserin aut Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. pitch angle distributions Starks, Michael J oth Horne, Richard B oth Meredith, Nigel P oth Glauert, Sarah A oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 43(2016), 6, Seite 2381-2388 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:43 year:2016 number:6 pages:2381-2388 http://dx.doi.org/10.1002/2016GL067938 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL067938/abstract http://search.proquest.com/docview/1782348387 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 43 2016 6 2381-2388 |
allfields_unstemmed |
10.1002/2016GL067938 doi PQ20160430 (DE-627)OLC1972637983 (DE-599)GBVOLC1972637983 (PRQ)p950-c2e8cac9d0bf55482167c16969a7c6897db326098f11ba6c507e276e5e4101e90 (KEY)0026932820160000043000602381quasilinearsimulationsofinnerradiationbeltelectron DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Albert, Jay M verfasserin aut Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. pitch angle distributions Starks, Michael J oth Horne, Richard B oth Meredith, Nigel P oth Glauert, Sarah A oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 43(2016), 6, Seite 2381-2388 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:43 year:2016 number:6 pages:2381-2388 http://dx.doi.org/10.1002/2016GL067938 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL067938/abstract http://search.proquest.com/docview/1782348387 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 43 2016 6 2381-2388 |
allfieldsGer |
10.1002/2016GL067938 doi PQ20160430 (DE-627)OLC1972637983 (DE-599)GBVOLC1972637983 (PRQ)p950-c2e8cac9d0bf55482167c16969a7c6897db326098f11ba6c507e276e5e4101e90 (KEY)0026932820160000043000602381quasilinearsimulationsofinnerradiationbeltelectron DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Albert, Jay M verfasserin aut Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. pitch angle distributions Starks, Michael J oth Horne, Richard B oth Meredith, Nigel P oth Glauert, Sarah A oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 43(2016), 6, Seite 2381-2388 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:43 year:2016 number:6 pages:2381-2388 http://dx.doi.org/10.1002/2016GL067938 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL067938/abstract http://search.proquest.com/docview/1782348387 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 43 2016 6 2381-2388 |
allfieldsSound |
10.1002/2016GL067938 doi PQ20160430 (DE-627)OLC1972637983 (DE-599)GBVOLC1972637983 (PRQ)p950-c2e8cac9d0bf55482167c16969a7c6897db326098f11ba6c507e276e5e4101e90 (KEY)0026932820160000043000602381quasilinearsimulationsofinnerradiationbeltelectron DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Albert, Jay M verfasserin aut Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. pitch angle distributions Starks, Michael J oth Horne, Richard B oth Meredith, Nigel P oth Glauert, Sarah A oth Enthalten in Geophysical research letters Washington, DC : Union, 1974 43(2016), 6, Seite 2381-2388 (DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X 0094-8276 nnns volume:43 year:2016 number:6 pages:2381-2388 http://dx.doi.org/10.1002/2016GL067938 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2016GL067938/abstract http://search.proquest.com/docview/1782348387 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 38.70 AVZ AR 43 2016 6 2381-2388 |
language |
English |
source |
Enthalten in Geophysical research letters 43(2016), 6, Seite 2381-2388 volume:43 year:2016 number:6 pages:2381-2388 |
sourceStr |
Enthalten in Geophysical research letters 43(2016), 6, Seite 2381-2388 volume:43 year:2016 number:6 pages:2381-2388 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
pitch angle distributions |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geophysical research letters |
authorswithroles_txt_mv |
Albert, Jay M @@aut@@ Starks, Michael J @@oth@@ Horne, Richard B @@oth@@ Meredith, Nigel P @@oth@@ Glauert, Sarah A @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129095109 |
dewey-sort |
3550 |
id |
OLC1972637983 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1972637983</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170635.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016GL067938</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1972637983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1972637983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p950-c2e8cac9d0bf55482167c16969a7c6897db326098f11ba6c507e276e5e4101e90</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820160000043000602381quasilinearsimulationsofinnerradiationbeltelectron</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Albert, Jay M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pitch angle distributions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Starks, Michael J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horne, Richard B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meredith, Nigel P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glauert, Sarah A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">43(2016), 6, Seite 2381-2388</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:2381-2388</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016GL067938</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2016GL067938/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1782348387</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="h">2381-2388</subfield></datafield></record></collection>
|
author |
Albert, Jay M |
spellingShingle |
Albert, Jay M ddc 550 bkl 38.70 misc pitch angle distributions Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions |
authorStr |
Albert, Jay M |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129095109 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0094-8276 |
topic_title |
550 DNB 38.70 bkl Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions pitch angle distributions |
topic |
ddc 550 bkl 38.70 misc pitch angle distributions |
topic_unstemmed |
ddc 550 bkl 38.70 misc pitch angle distributions |
topic_browse |
ddc 550 bkl 38.70 misc pitch angle distributions |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m j s mj mjs r b h rb rbh n p m np npm s a g sa sag |
hierarchy_parent_title |
Geophysical research letters |
hierarchy_parent_id |
129095109 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geophysical research letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129095109 (DE-600)7403-2 (DE-576)01443122X |
title |
Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions |
ctrlnum |
(DE-627)OLC1972637983 (DE-599)GBVOLC1972637983 (PRQ)p950-c2e8cac9d0bf55482167c16969a7c6897db326098f11ba6c507e276e5e4101e90 (KEY)0026932820160000043000602381quasilinearsimulationsofinnerradiationbeltelectron |
title_full |
Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions |
author_sort |
Albert, Jay M |
journal |
Geophysical research letters |
journalStr |
Geophysical research letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
2381 |
author_browse |
Albert, Jay M |
container_volume |
43 |
class |
550 DNB 38.70 bkl |
format_se |
Aufsätze |
author-letter |
Albert, Jay M |
doi_str_mv |
10.1002/2016GL067938 |
dewey-full |
550 |
title_sort |
quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions |
title_auth |
Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions |
abstract |
Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves |
abstractGer |
Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves |
abstract_unstemmed |
Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_47 GBV_ILN_62 GBV_ILN_154 GBV_ILN_601 GBV_ILN_2279 |
container_issue |
6 |
title_short |
Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions |
url |
http://dx.doi.org/10.1002/2016GL067938 http://onlinelibrary.wiley.com/doi/10.1002/2016GL067938/abstract http://search.proquest.com/docview/1782348387 |
remote_bool |
false |
author2 |
Starks, Michael J Horne, Richard B Meredith, Nigel P Glauert, Sarah A |
author2Str |
Starks, Michael J Horne, Richard B Meredith, Nigel P Glauert, Sarah A |
ppnlink |
129095109 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1002/2016GL067938 |
up_date |
2024-07-03T23:56:21.511Z |
_version_ |
1803604177989926912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1972637983</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220223170635.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2016GL067938</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1972637983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1972637983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p950-c2e8cac9d0bf55482167c16969a7c6897db326098f11ba6c507e276e5e4101e90</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0026932820160000043000602381quasilinearsimulationsofinnerradiationbeltelectron</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Albert, Jay M</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi‐linear simulations of inner radiation belt electron pitch angle and energy distributions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Peculiar” or “butterfly” electron pitch angle distributions (PADs), with minima near 90°, have recently been observed in the inner radiation belt. These electrons are traditionally treated by pure pitch angle diffusion, driven by plasmaspheric hiss, lightning‐generated whistlers, and VLF transmitter signals. Since this leads to monotonic PADs, energy diffusion by magnetosonic waves has been proposed to account for the observations. We show that the observed PADs arise readily from two‐dimensional diffusion at L = 2, with or without magnetosonic waves. It is necessary to include cross diffusion, which accounts for the relationship between pitch angle and energy changes. The distribution of flux with energy is also in good agreement with observations between 200 keV and 1 MeV, dropping to very low levels at higher energy. Thus, at this location radial diffusion may be negligible at subrelativistic as well as ultrarelativistic energy. Hiss, lightning‐generated whistlers, and VLF transmitters can cause butterfly distributions at L = 2 Cross diffusion and boundary conditions must be treated properly to reproduce the distributions The butterfly distributions may be enhanced by magnetosonic waves</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pitch angle distributions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Starks, Michael J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horne, Richard B</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meredith, Nigel P</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glauert, Sarah A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geophysical research letters</subfield><subfield code="d">Washington, DC : Union, 1974</subfield><subfield code="g">43(2016), 6, Seite 2381-2388</subfield><subfield code="w">(DE-627)129095109</subfield><subfield code="w">(DE-600)7403-2</subfield><subfield code="w">(DE-576)01443122X</subfield><subfield code="x">0094-8276</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:43</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:2381-2388</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2016GL067938</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2016GL067938/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1782348387</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">43</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="h">2381-2388</subfield></datafield></record></collection>
|
score |
7.4022093 |