Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition
The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabri...
Ausführliche Beschreibung
Autor*in: |
Fu, Ming [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Fire and materials - London : Heyden, 1976, 40(2016), 2, Seite 179-189 |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2016 ; number:2 ; pages:179-189 |
Links: |
---|
DOI / URN: |
10.1002/fam.2278 |
---|
Katalog-ID: |
OLC1972676830 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1972676830 | ||
003 | DE-627 | ||
005 | 20220215160255.0 | ||
007 | tu | ||
008 | 160427s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/fam.2278 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1972676830 | ||
035 | |a (DE-599)GBVOLC1972676830 | ||
035 | |a (PRQ)p2206-7a88d55d4c5d49d9728493d5b10eaa7f2d04c39ecb79053d9dd825112528698c3 | ||
035 | |a (KEY)0035598420160000040000200179quantitativeinvestigationofairgapsentrappedinmulti | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DNB |
084 | |a 51.00 |2 bkl | ||
084 | |a 56.55 |2 bkl | ||
100 | 1 | |a Fu, Ming |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. | ||
650 | 4 | |a thermal radiation | |
650 | 4 | |a firefighting | |
650 | 4 | |a protective clothing | |
650 | 4 | |a air gap | |
650 | 4 | |a thermal protective performance | |
700 | 1 | |a Weng, Wenguo |4 oth | |
700 | 1 | |a Yuan, Hongyong |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Fire and materials |d London : Heyden, 1976 |g 40(2016), 2, Seite 179-189 |w (DE-627)129450227 |w (DE-600)197385-X |w (DE-576)014815796 |x 0308-0501 |7 nnns |
773 | 1 | 8 | |g volume:40 |g year:2016 |g number:2 |g pages:179-189 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/fam.2278 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/fam.2278/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1759903560 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2014 | ||
936 | b | k | |a 51.00 |q AVZ |
936 | b | k | |a 56.55 |q AVZ |
951 | |a AR | ||
952 | |d 40 |j 2016 |e 2 |h 179-189 |
author_variant |
m f mf |
---|---|
matchkey_str |
article:03080501:2016----::uniaienetgtooarasnrpeimliaetemlrtcieltignolvl |
hierarchy_sort_str |
2016 |
bklnumber |
51.00 56.55 |
publishDate |
2016 |
allfields |
10.1002/fam.2278 doi PQ20160430 (DE-627)OLC1972676830 (DE-599)GBVOLC1972676830 (PRQ)p2206-7a88d55d4c5d49d9728493d5b10eaa7f2d04c39ecb79053d9dd825112528698c3 (KEY)0035598420160000040000200179quantitativeinvestigationofairgapsentrappedinmulti DE-627 ger DE-627 rakwb eng 690 DNB 51.00 bkl 56.55 bkl Fu, Ming verfasserin aut Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. thermal radiation firefighting protective clothing air gap thermal protective performance Weng, Wenguo oth Yuan, Hongyong oth Enthalten in Fire and materials London : Heyden, 1976 40(2016), 2, Seite 179-189 (DE-627)129450227 (DE-600)197385-X (DE-576)014815796 0308-0501 nnns volume:40 year:2016 number:2 pages:179-189 http://dx.doi.org/10.1002/fam.2278 Volltext http://onlinelibrary.wiley.com/doi/10.1002/fam.2278/abstract http://search.proquest.com/docview/1759903560 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2014 51.00 AVZ 56.55 AVZ AR 40 2016 2 179-189 |
spelling |
10.1002/fam.2278 doi PQ20160430 (DE-627)OLC1972676830 (DE-599)GBVOLC1972676830 (PRQ)p2206-7a88d55d4c5d49d9728493d5b10eaa7f2d04c39ecb79053d9dd825112528698c3 (KEY)0035598420160000040000200179quantitativeinvestigationofairgapsentrappedinmulti DE-627 ger DE-627 rakwb eng 690 DNB 51.00 bkl 56.55 bkl Fu, Ming verfasserin aut Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. thermal radiation firefighting protective clothing air gap thermal protective performance Weng, Wenguo oth Yuan, Hongyong oth Enthalten in Fire and materials London : Heyden, 1976 40(2016), 2, Seite 179-189 (DE-627)129450227 (DE-600)197385-X (DE-576)014815796 0308-0501 nnns volume:40 year:2016 number:2 pages:179-189 http://dx.doi.org/10.1002/fam.2278 Volltext http://onlinelibrary.wiley.com/doi/10.1002/fam.2278/abstract http://search.proquest.com/docview/1759903560 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2014 51.00 AVZ 56.55 AVZ AR 40 2016 2 179-189 |
allfields_unstemmed |
10.1002/fam.2278 doi PQ20160430 (DE-627)OLC1972676830 (DE-599)GBVOLC1972676830 (PRQ)p2206-7a88d55d4c5d49d9728493d5b10eaa7f2d04c39ecb79053d9dd825112528698c3 (KEY)0035598420160000040000200179quantitativeinvestigationofairgapsentrappedinmulti DE-627 ger DE-627 rakwb eng 690 DNB 51.00 bkl 56.55 bkl Fu, Ming verfasserin aut Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. thermal radiation firefighting protective clothing air gap thermal protective performance Weng, Wenguo oth Yuan, Hongyong oth Enthalten in Fire and materials London : Heyden, 1976 40(2016), 2, Seite 179-189 (DE-627)129450227 (DE-600)197385-X (DE-576)014815796 0308-0501 nnns volume:40 year:2016 number:2 pages:179-189 http://dx.doi.org/10.1002/fam.2278 Volltext http://onlinelibrary.wiley.com/doi/10.1002/fam.2278/abstract http://search.proquest.com/docview/1759903560 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2014 51.00 AVZ 56.55 AVZ AR 40 2016 2 179-189 |
allfieldsGer |
10.1002/fam.2278 doi PQ20160430 (DE-627)OLC1972676830 (DE-599)GBVOLC1972676830 (PRQ)p2206-7a88d55d4c5d49d9728493d5b10eaa7f2d04c39ecb79053d9dd825112528698c3 (KEY)0035598420160000040000200179quantitativeinvestigationofairgapsentrappedinmulti DE-627 ger DE-627 rakwb eng 690 DNB 51.00 bkl 56.55 bkl Fu, Ming verfasserin aut Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. thermal radiation firefighting protective clothing air gap thermal protective performance Weng, Wenguo oth Yuan, Hongyong oth Enthalten in Fire and materials London : Heyden, 1976 40(2016), 2, Seite 179-189 (DE-627)129450227 (DE-600)197385-X (DE-576)014815796 0308-0501 nnns volume:40 year:2016 number:2 pages:179-189 http://dx.doi.org/10.1002/fam.2278 Volltext http://onlinelibrary.wiley.com/doi/10.1002/fam.2278/abstract http://search.proquest.com/docview/1759903560 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2014 51.00 AVZ 56.55 AVZ AR 40 2016 2 179-189 |
allfieldsSound |
10.1002/fam.2278 doi PQ20160430 (DE-627)OLC1972676830 (DE-599)GBVOLC1972676830 (PRQ)p2206-7a88d55d4c5d49d9728493d5b10eaa7f2d04c39ecb79053d9dd825112528698c3 (KEY)0035598420160000040000200179quantitativeinvestigationofairgapsentrappedinmulti DE-627 ger DE-627 rakwb eng 690 DNB 51.00 bkl 56.55 bkl Fu, Ming verfasserin aut Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd. thermal radiation firefighting protective clothing air gap thermal protective performance Weng, Wenguo oth Yuan, Hongyong oth Enthalten in Fire and materials London : Heyden, 1976 40(2016), 2, Seite 179-189 (DE-627)129450227 (DE-600)197385-X (DE-576)014815796 0308-0501 nnns volume:40 year:2016 number:2 pages:179-189 http://dx.doi.org/10.1002/fam.2278 Volltext http://onlinelibrary.wiley.com/doi/10.1002/fam.2278/abstract http://search.proquest.com/docview/1759903560 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2014 51.00 AVZ 56.55 AVZ AR 40 2016 2 179-189 |
language |
English |
source |
Enthalten in Fire and materials 40(2016), 2, Seite 179-189 volume:40 year:2016 number:2 pages:179-189 |
sourceStr |
Enthalten in Fire and materials 40(2016), 2, Seite 179-189 volume:40 year:2016 number:2 pages:179-189 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
thermal radiation firefighting protective clothing air gap thermal protective performance |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Fire and materials |
authorswithroles_txt_mv |
Fu, Ming @@aut@@ Weng, Wenguo @@oth@@ Yuan, Hongyong @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129450227 |
dewey-sort |
3690 |
id |
OLC1972676830 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1972676830</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215160255.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/fam.2278</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1972676830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1972676830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p2206-7a88d55d4c5d49d9728493d5b10eaa7f2d04c39ecb79053d9dd825112528698c3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0035598420160000040000200179quantitativeinvestigationofairgapsentrappedinmulti</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">firefighting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">protective clothing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air gap</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal protective performance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weng, Wenguo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Hongyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fire and materials</subfield><subfield code="d">London : Heyden, 1976</subfield><subfield code="g">40(2016), 2, Seite 179-189</subfield><subfield code="w">(DE-627)129450227</subfield><subfield code="w">(DE-600)197385-X</subfield><subfield code="w">(DE-576)014815796</subfield><subfield code="x">0308-0501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:179-189</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/fam.2278</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/fam.2278/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1759903560</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.55</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">179-189</subfield></datafield></record></collection>
|
author |
Fu, Ming |
spellingShingle |
Fu, Ming ddc 690 bkl 51.00 bkl 56.55 misc thermal radiation misc firefighting misc protective clothing misc air gap misc thermal protective performance Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition |
authorStr |
Fu, Ming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129450227 |
format |
Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0308-0501 |
topic_title |
690 DNB 51.00 bkl 56.55 bkl Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition thermal radiation firefighting protective clothing air gap thermal protective performance |
topic |
ddc 690 bkl 51.00 bkl 56.55 misc thermal radiation misc firefighting misc protective clothing misc air gap misc thermal protective performance |
topic_unstemmed |
ddc 690 bkl 51.00 bkl 56.55 misc thermal radiation misc firefighting misc protective clothing misc air gap misc thermal protective performance |
topic_browse |
ddc 690 bkl 51.00 bkl 56.55 misc thermal radiation misc firefighting misc protective clothing misc air gap misc thermal protective performance |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
w w ww h y hy |
hierarchy_parent_title |
Fire and materials |
hierarchy_parent_id |
129450227 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Fire and materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129450227 (DE-600)197385-X (DE-576)014815796 |
title |
Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition |
ctrlnum |
(DE-627)OLC1972676830 (DE-599)GBVOLC1972676830 (PRQ)p2206-7a88d55d4c5d49d9728493d5b10eaa7f2d04c39ecb79053d9dd825112528698c3 (KEY)0035598420160000040000200179quantitativeinvestigationofairgapsentrappedinmulti |
title_full |
Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition |
author_sort |
Fu, Ming |
journal |
Fire and materials |
journalStr |
Fire and materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
179 |
author_browse |
Fu, Ming |
container_volume |
40 |
class |
690 DNB 51.00 bkl 56.55 bkl |
format_se |
Aufsätze |
author-letter |
Fu, Ming |
doi_str_mv |
10.1002/fam.2278 |
dewey-full |
690 |
title_sort |
quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition |
title_auth |
Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition |
abstract |
The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd. |
abstractGer |
The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd. |
abstract_unstemmed |
The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC GBV_ILN_20 GBV_ILN_70 GBV_ILN_2014 |
container_issue |
2 |
title_short |
Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition |
url |
http://dx.doi.org/10.1002/fam.2278 http://onlinelibrary.wiley.com/doi/10.1002/fam.2278/abstract http://search.proquest.com/docview/1759903560 |
remote_bool |
false |
author2 |
Weng, Wenguo Yuan, Hongyong |
author2Str |
Weng, Wenguo Yuan, Hongyong |
ppnlink |
129450227 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/fam.2278 |
up_date |
2024-07-04T00:05:59.052Z |
_version_ |
1803604783585558528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1972676830</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215160255.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/fam.2278</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1972676830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1972676830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p2206-7a88d55d4c5d49d9728493d5b10eaa7f2d04c39ecb79053d9dd825112528698c3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0035598420160000040000200179quantitativeinvestigationofairgapsentrappedinmulti</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fu, Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantitative investigation of air gaps entrapped in multilayer thermal protective clothing in low‐level radiation at the moisture condition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The effects of air gaps entrapped within the multilayer protective clothing system on the thermal performance were studied during low‐level radiation (2–10 kW/m 2 ). A bench‐scale apparatus was designed to produce the liquid droplets and simulate human sweat transferring through the multilayer fabric system. Two air gaps located between the outer shell and the moisture barrier (Gap A) and between the moisture barrier and the thermal liner (Gap B) were used with different gap sizes (0, 2, and 5 mm). The thermal resistance analysis for the heat transfer with a multilayer flat wall was used to interpret the effects of air gap. The results show that the total thermal resistance of a multilayer clothing system and the thermal resistances of the two air gaps are linearly related with the level of heat flux. It is also indicated that the air gap position affects the beneficial effect of the gap size. The effect of Gap B to improve the thermal performance is better than that of Gap A. Copyright © 2014 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2014 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal radiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">firefighting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">protective clothing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">air gap</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal protective performance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weng, Wenguo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Hongyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fire and materials</subfield><subfield code="d">London : Heyden, 1976</subfield><subfield code="g">40(2016), 2, Seite 179-189</subfield><subfield code="w">(DE-627)129450227</subfield><subfield code="w">(DE-600)197385-X</subfield><subfield code="w">(DE-576)014815796</subfield><subfield code="x">0308-0501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:179-189</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/fam.2278</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/fam.2278/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1759903560</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.55</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">179-189</subfield></datafield></record></collection>
|
score |
7.401043 |