Selection of bandwidth for kernel regression
The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The prop...
Ausführliche Beschreibung
Autor*in: |
Koláček, Jan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016 Taylor & Francis Group, LLC 2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Communications in statistics / Theory and methods - London : Taylor and Francis, 1982, 45(2016), 5, Seite 1487 |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2016 ; number:5 ; pages:1487 |
Links: |
---|
DOI / URN: |
10.1080/03610926.2013.864770 |
---|
Katalog-ID: |
OLC1972991574 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1972991574 | ||
003 | DE-627 | ||
005 | 20220221022758.0 | ||
007 | tu | ||
008 | 160427s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1080/03610926.2013.864770 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1972991574 | ||
035 | |a (DE-599)GBVOLC1972991574 | ||
035 | |a (PRQ)i1190-e331600325cf30d611d83acc9ab5dfa7e4f0f31393a8d01ae463f010eb98b3390 | ||
035 | |a (KEY)0108848320160000045000501487selectionofbandwidthforkernelregression | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
084 | |a 31.73 |2 bkl | ||
100 | 1 | |a Koláček, Jan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Selection of bandwidth for kernel regression |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications. | ||
540 | |a Nutzungsrecht: © 2016 Taylor & Francis Group, LLC 2016 | ||
650 | 4 | |a 62G08 | |
650 | 4 | |a Kernel regression | |
650 | 4 | |a iterative method | |
650 | 4 | |a bandwidth selection | |
650 | 4 | |a Iterative methods | |
700 | 1 | |a Horová, Ivanka |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Communications in statistics / Theory and methods |d London : Taylor and Francis, 1982 |g 45(2016), 5, Seite 1487 |w (DE-627)129862290 |w (DE-600)283673-7 |w (DE-576)015173747 |x 0361-0926 |7 nnns |
773 | 1 | 8 | |g volume:45 |g year:2016 |g number:5 |g pages:1487 |
856 | 4 | 1 | |u http://dx.doi.org/10.1080/03610926.2013.864770 |3 Volltext |
856 | 4 | 2 | |u http://www.tandfonline.com/doi/abs/10.1080/03610926.2013.864770 |
856 | 4 | 2 | |u http://search.proquest.com/docview/1766271662 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 31.73 |q AVZ |
951 | |a AR | ||
952 | |d 45 |j 2016 |e 5 |h 1487 |
author_variant |
j k jk |
---|---|
matchkey_str |
article:03610926:2016----::eetoobnwdhokr |
hierarchy_sort_str |
2016 |
bklnumber |
31.73 |
publishDate |
2016 |
allfields |
10.1080/03610926.2013.864770 doi PQ20160430 (DE-627)OLC1972991574 (DE-599)GBVOLC1972991574 (PRQ)i1190-e331600325cf30d611d83acc9ab5dfa7e4f0f31393a8d01ae463f010eb98b3390 (KEY)0108848320160000045000501487selectionofbandwidthforkernelregression DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Koláček, Jan verfasserin aut Selection of bandwidth for kernel regression 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications. Nutzungsrecht: © 2016 Taylor & Francis Group, LLC 2016 62G08 Kernel regression iterative method bandwidth selection Iterative methods Horová, Ivanka oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 45(2016), 5, Seite 1487 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:45 year:2016 number:5 pages:1487 http://dx.doi.org/10.1080/03610926.2013.864770 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2013.864770 http://search.proquest.com/docview/1766271662 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 45 2016 5 1487 |
spelling |
10.1080/03610926.2013.864770 doi PQ20160430 (DE-627)OLC1972991574 (DE-599)GBVOLC1972991574 (PRQ)i1190-e331600325cf30d611d83acc9ab5dfa7e4f0f31393a8d01ae463f010eb98b3390 (KEY)0108848320160000045000501487selectionofbandwidthforkernelregression DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Koláček, Jan verfasserin aut Selection of bandwidth for kernel regression 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications. Nutzungsrecht: © 2016 Taylor & Francis Group, LLC 2016 62G08 Kernel regression iterative method bandwidth selection Iterative methods Horová, Ivanka oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 45(2016), 5, Seite 1487 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:45 year:2016 number:5 pages:1487 http://dx.doi.org/10.1080/03610926.2013.864770 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2013.864770 http://search.proquest.com/docview/1766271662 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 45 2016 5 1487 |
allfields_unstemmed |
10.1080/03610926.2013.864770 doi PQ20160430 (DE-627)OLC1972991574 (DE-599)GBVOLC1972991574 (PRQ)i1190-e331600325cf30d611d83acc9ab5dfa7e4f0f31393a8d01ae463f010eb98b3390 (KEY)0108848320160000045000501487selectionofbandwidthforkernelregression DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Koláček, Jan verfasserin aut Selection of bandwidth for kernel regression 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications. Nutzungsrecht: © 2016 Taylor & Francis Group, LLC 2016 62G08 Kernel regression iterative method bandwidth selection Iterative methods Horová, Ivanka oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 45(2016), 5, Seite 1487 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:45 year:2016 number:5 pages:1487 http://dx.doi.org/10.1080/03610926.2013.864770 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2013.864770 http://search.proquest.com/docview/1766271662 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 45 2016 5 1487 |
allfieldsGer |
10.1080/03610926.2013.864770 doi PQ20160430 (DE-627)OLC1972991574 (DE-599)GBVOLC1972991574 (PRQ)i1190-e331600325cf30d611d83acc9ab5dfa7e4f0f31393a8d01ae463f010eb98b3390 (KEY)0108848320160000045000501487selectionofbandwidthforkernelregression DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Koláček, Jan verfasserin aut Selection of bandwidth for kernel regression 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications. Nutzungsrecht: © 2016 Taylor & Francis Group, LLC 2016 62G08 Kernel regression iterative method bandwidth selection Iterative methods Horová, Ivanka oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 45(2016), 5, Seite 1487 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:45 year:2016 number:5 pages:1487 http://dx.doi.org/10.1080/03610926.2013.864770 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2013.864770 http://search.proquest.com/docview/1766271662 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 45 2016 5 1487 |
allfieldsSound |
10.1080/03610926.2013.864770 doi PQ20160430 (DE-627)OLC1972991574 (DE-599)GBVOLC1972991574 (PRQ)i1190-e331600325cf30d611d83acc9ab5dfa7e4f0f31393a8d01ae463f010eb98b3390 (KEY)0108848320160000045000501487selectionofbandwidthforkernelregression DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Koláček, Jan verfasserin aut Selection of bandwidth for kernel regression 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications. Nutzungsrecht: © 2016 Taylor & Francis Group, LLC 2016 62G08 Kernel regression iterative method bandwidth selection Iterative methods Horová, Ivanka oth Enthalten in Communications in statistics / Theory and methods London : Taylor and Francis, 1982 45(2016), 5, Seite 1487 (DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 0361-0926 nnns volume:45 year:2016 number:5 pages:1487 http://dx.doi.org/10.1080/03610926.2013.864770 Volltext http://www.tandfonline.com/doi/abs/10.1080/03610926.2013.864770 http://search.proquest.com/docview/1766271662 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 31.73 AVZ AR 45 2016 5 1487 |
language |
English |
source |
Enthalten in Communications in statistics / Theory and methods 45(2016), 5, Seite 1487 volume:45 year:2016 number:5 pages:1487 |
sourceStr |
Enthalten in Communications in statistics / Theory and methods 45(2016), 5, Seite 1487 volume:45 year:2016 number:5 pages:1487 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
62G08 Kernel regression iterative method bandwidth selection Iterative methods |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Communications in statistics / Theory and methods |
authorswithroles_txt_mv |
Koláček, Jan @@aut@@ Horová, Ivanka @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129862290 |
dewey-sort |
3510 |
id |
OLC1972991574 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1972991574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221022758.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/03610926.2013.864770</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1972991574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1972991574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1190-e331600325cf30d611d83acc9ab5dfa7e4f0f31393a8d01ae463f010eb98b3390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108848320160000045000501487selectionofbandwidthforkernelregression</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koláček, Jan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Selection of bandwidth for kernel regression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Taylor & Francis Group, LLC 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62G08</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel regression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iterative method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bandwidth selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horová, Ivanka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in statistics / Theory and methods</subfield><subfield code="d">London : Taylor and Francis, 1982</subfield><subfield code="g">45(2016), 5, Seite 1487</subfield><subfield code="w">(DE-627)129862290</subfield><subfield code="w">(DE-600)283673-7</subfield><subfield code="w">(DE-576)015173747</subfield><subfield code="x">0361-0926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1487</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/03610926.2013.864770</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/03610926.2013.864770</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1766271662</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">1487</subfield></datafield></record></collection>
|
author |
Koláček, Jan |
spellingShingle |
Koláček, Jan ddc 510 bkl 31.73 misc 62G08 misc Kernel regression misc iterative method misc bandwidth selection misc Iterative methods Selection of bandwidth for kernel regression |
authorStr |
Koláček, Jan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129862290 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0361-0926 |
topic_title |
510 DNB 31.73 bkl Selection of bandwidth for kernel regression 62G08 Kernel regression iterative method bandwidth selection Iterative methods |
topic |
ddc 510 bkl 31.73 misc 62G08 misc Kernel regression misc iterative method misc bandwidth selection misc Iterative methods |
topic_unstemmed |
ddc 510 bkl 31.73 misc 62G08 misc Kernel regression misc iterative method misc bandwidth selection misc Iterative methods |
topic_browse |
ddc 510 bkl 31.73 misc 62G08 misc Kernel regression misc iterative method misc bandwidth selection misc Iterative methods |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
i h ih |
hierarchy_parent_title |
Communications in statistics / Theory and methods |
hierarchy_parent_id |
129862290 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Communications in statistics / Theory and methods |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129862290 (DE-600)283673-7 (DE-576)015173747 |
title |
Selection of bandwidth for kernel regression |
ctrlnum |
(DE-627)OLC1972991574 (DE-599)GBVOLC1972991574 (PRQ)i1190-e331600325cf30d611d83acc9ab5dfa7e4f0f31393a8d01ae463f010eb98b3390 (KEY)0108848320160000045000501487selectionofbandwidthforkernelregression |
title_full |
Selection of bandwidth for kernel regression |
author_sort |
Koláček, Jan |
journal |
Communications in statistics / Theory and methods |
journalStr |
Communications in statistics / Theory and methods |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1487 |
author_browse |
Koláček, Jan |
container_volume |
45 |
class |
510 DNB 31.73 bkl |
format_se |
Aufsätze |
author-letter |
Koláček, Jan |
doi_str_mv |
10.1080/03610926.2013.864770 |
dewey-full |
510 |
title_sort |
selection of bandwidth for kernel regression |
title_auth |
Selection of bandwidth for kernel regression |
abstract |
The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications. |
abstractGer |
The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications. |
abstract_unstemmed |
The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
5 |
title_short |
Selection of bandwidth for kernel regression |
url |
http://dx.doi.org/10.1080/03610926.2013.864770 http://www.tandfonline.com/doi/abs/10.1080/03610926.2013.864770 http://search.proquest.com/docview/1766271662 |
remote_bool |
false |
author2 |
Horová, Ivanka |
author2Str |
Horová, Ivanka |
ppnlink |
129862290 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1080/03610926.2013.864770 |
up_date |
2024-07-04T01:17:33.763Z |
_version_ |
1803609286917488640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1972991574</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221022758.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1080/03610926.2013.864770</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1972991574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1972991574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i1190-e331600325cf30d611d83acc9ab5dfa7e4f0f31393a8d01ae463f010eb98b3390</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108848320160000045000501487selectionofbandwidthforkernelregression</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koláček, Jan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Selection of bandwidth for kernel regression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The most important factor in kernel regression is a choice of a bandwidth. Considerable attention has been paid to extension the idea of an iterative method known for a kernel density estimate to kernel regression. Data-driven selectors of the bandwidth for kernel regression are considered. The proposed method is based on an optimally balanced relation between the integrated variance and the integrated square bias. This approach leads to an iterative quadratically convergent process. The analysis of statistical properties shows the rationale of the proposed method. In order to see statistical properties of this method the consistency is determined. The utility of the method is illustrated through a simulation study and real data applications.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016 Taylor & Francis Group, LLC 2016</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">62G08</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel regression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">iterative method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bandwidth selection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iterative methods</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horová, Ivanka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Communications in statistics / Theory and methods</subfield><subfield code="d">London : Taylor and Francis, 1982</subfield><subfield code="g">45(2016), 5, Seite 1487</subfield><subfield code="w">(DE-627)129862290</subfield><subfield code="w">(DE-600)283673-7</subfield><subfield code="w">(DE-576)015173747</subfield><subfield code="x">0361-0926</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:1487</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1080/03610926.2013.864770</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://www.tandfonline.com/doi/abs/10.1080/03610926.2013.864770</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1766271662</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">1487</subfield></datafield></record></collection>
|
score |
7.401575 |