Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited
One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the...
Ausführliche Beschreibung
Autor*in: |
Diko, M. D [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Quality and reliability engineering international - Chichester [u.a.] : Wiley, 1985, 32(2016), 2, Seite 609-622 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2016 ; number:2 ; pages:609-622 |
Links: |
---|
DOI / URN: |
10.1002/qre.1776 |
---|
Katalog-ID: |
OLC1973068249 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1973068249 | ||
003 | DE-627 | ||
005 | 20220217093002.0 | ||
007 | tu | ||
008 | 160427s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/qre.1776 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1973068249 | ||
035 | |a (DE-599)GBVOLC1973068249 | ||
035 | |a (PRQ)c2248-8262c6ecd63aae00bcf52051a8637969f035bde698848c0cfc584d6f76ad2b383 | ||
035 | |a (KEY)0136540120160000032000200609monitoringtheprocessmeanwhenstandardsareunknownacl | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 650 |a 690 |q DNB |
084 | |a 50.16 |2 bkl | ||
084 | |a 85.38 |2 bkl | ||
100 | 1 | |a Diko, M. D |e verfasserin |4 aut | |
245 | 1 | 0 | |a Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. | ||
650 | 4 | |a monitoring mean and variance | |
650 | 4 | |a parameter estimation | |
650 | 4 | |a false alarm rate | |
650 | 4 | |a Shewhart | |
650 | 4 | |a multiple charting | |
650 | 4 | |a average run length | |
650 | 4 | |a Shewhart chart | |
650 | 4 | |a chart | |
650 | 4 | |a 3‐sigma limits | |
700 | 1 | |a Chakraborti, S |4 oth | |
700 | 1 | |a Graham, M. A |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Quality and reliability engineering international |d Chichester [u.a.] : Wiley, 1985 |g 32(2016), 2, Seite 609-622 |w (DE-627)129167614 |w (DE-600)50641-2 |w (DE-576)028403312 |x 0748-8017 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2016 |g number:2 |g pages:609-622 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/qre.1776 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/qre.1776/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1764092081 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 50.16 |q AVZ |
936 | b | k | |a 85.38 |q AVZ |
951 | |a AR | ||
952 | |d 32 |j 2016 |e 2 |h 609-622 |
author_variant |
m d d md mdd |
---|---|
matchkey_str |
article:07488017:2016----::oioighpoesenhntnadaennwal |
hierarchy_sort_str |
2016 |
bklnumber |
50.16 85.38 |
publishDate |
2016 |
allfields |
10.1002/qre.1776 doi PQ20160430 (DE-627)OLC1973068249 (DE-599)GBVOLC1973068249 (PRQ)c2248-8262c6ecd63aae00bcf52051a8637969f035bde698848c0cfc584d6f76ad2b383 (KEY)0136540120160000032000200609monitoringtheprocessmeanwhenstandardsareunknownacl DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Diko, M. D verfasserin aut Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. monitoring mean and variance parameter estimation false alarm rate Shewhart multiple charting average run length Shewhart chart chart 3‐sigma limits Chakraborti, S oth Graham, M. A oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 32(2016), 2, Seite 609-622 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:32 year:2016 number:2 pages:609-622 http://dx.doi.org/10.1002/qre.1776 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.1776/abstract http://search.proquest.com/docview/1764092081 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 32 2016 2 609-622 |
spelling |
10.1002/qre.1776 doi PQ20160430 (DE-627)OLC1973068249 (DE-599)GBVOLC1973068249 (PRQ)c2248-8262c6ecd63aae00bcf52051a8637969f035bde698848c0cfc584d6f76ad2b383 (KEY)0136540120160000032000200609monitoringtheprocessmeanwhenstandardsareunknownacl DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Diko, M. D verfasserin aut Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. monitoring mean and variance parameter estimation false alarm rate Shewhart multiple charting average run length Shewhart chart chart 3‐sigma limits Chakraborti, S oth Graham, M. A oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 32(2016), 2, Seite 609-622 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:32 year:2016 number:2 pages:609-622 http://dx.doi.org/10.1002/qre.1776 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.1776/abstract http://search.proquest.com/docview/1764092081 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 32 2016 2 609-622 |
allfields_unstemmed |
10.1002/qre.1776 doi PQ20160430 (DE-627)OLC1973068249 (DE-599)GBVOLC1973068249 (PRQ)c2248-8262c6ecd63aae00bcf52051a8637969f035bde698848c0cfc584d6f76ad2b383 (KEY)0136540120160000032000200609monitoringtheprocessmeanwhenstandardsareunknownacl DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Diko, M. D verfasserin aut Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. monitoring mean and variance parameter estimation false alarm rate Shewhart multiple charting average run length Shewhart chart chart 3‐sigma limits Chakraborti, S oth Graham, M. A oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 32(2016), 2, Seite 609-622 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:32 year:2016 number:2 pages:609-622 http://dx.doi.org/10.1002/qre.1776 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.1776/abstract http://search.proquest.com/docview/1764092081 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 32 2016 2 609-622 |
allfieldsGer |
10.1002/qre.1776 doi PQ20160430 (DE-627)OLC1973068249 (DE-599)GBVOLC1973068249 (PRQ)c2248-8262c6ecd63aae00bcf52051a8637969f035bde698848c0cfc584d6f76ad2b383 (KEY)0136540120160000032000200609monitoringtheprocessmeanwhenstandardsareunknownacl DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Diko, M. D verfasserin aut Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. monitoring mean and variance parameter estimation false alarm rate Shewhart multiple charting average run length Shewhart chart chart 3‐sigma limits Chakraborti, S oth Graham, M. A oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 32(2016), 2, Seite 609-622 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:32 year:2016 number:2 pages:609-622 http://dx.doi.org/10.1002/qre.1776 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.1776/abstract http://search.proquest.com/docview/1764092081 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 32 2016 2 609-622 |
allfieldsSound |
10.1002/qre.1776 doi PQ20160430 (DE-627)OLC1973068249 (DE-599)GBVOLC1973068249 (PRQ)c2248-8262c6ecd63aae00bcf52051a8637969f035bde698848c0cfc584d6f76ad2b383 (KEY)0136540120160000032000200609monitoringtheprocessmeanwhenstandardsareunknownacl DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Diko, M. D verfasserin aut Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. monitoring mean and variance parameter estimation false alarm rate Shewhart multiple charting average run length Shewhart chart chart 3‐sigma limits Chakraborti, S oth Graham, M. A oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 32(2016), 2, Seite 609-622 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:32 year:2016 number:2 pages:609-622 http://dx.doi.org/10.1002/qre.1776 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.1776/abstract http://search.proquest.com/docview/1764092081 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 32 2016 2 609-622 |
language |
English |
source |
Enthalten in Quality and reliability engineering international 32(2016), 2, Seite 609-622 volume:32 year:2016 number:2 pages:609-622 |
sourceStr |
Enthalten in Quality and reliability engineering international 32(2016), 2, Seite 609-622 volume:32 year:2016 number:2 pages:609-622 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
monitoring mean and variance parameter estimation false alarm rate Shewhart multiple charting average run length Shewhart chart chart 3‐sigma limits |
dewey-raw |
650 |
isfreeaccess_bool |
false |
container_title |
Quality and reliability engineering international |
authorswithroles_txt_mv |
Diko, M. D @@aut@@ Chakraborti, S @@oth@@ Graham, M. A @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129167614 |
dewey-sort |
3650 |
id |
OLC1973068249 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1973068249</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220217093002.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/qre.1776</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1973068249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1973068249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2248-8262c6ecd63aae00bcf52051a8637969f035bde698848c0cfc584d6f76ad2b383</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0136540120160000032000200609monitoringtheprocessmeanwhenstandardsareunknownacl</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="a">690</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Diko, M. D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monitoring mean and variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parameter estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">false alarm rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shewhart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple charting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">average run length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shewhart chart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3‐sigma limits</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborti, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graham, M. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quality and reliability engineering international</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1985</subfield><subfield code="g">32(2016), 2, Seite 609-622</subfield><subfield code="w">(DE-627)129167614</subfield><subfield code="w">(DE-600)50641-2</subfield><subfield code="w">(DE-576)028403312</subfield><subfield code="x">0748-8017</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:609-622</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/qre.1776</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/qre.1776/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1764092081</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.38</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">609-622</subfield></datafield></record></collection>
|
author |
Diko, M. D |
spellingShingle |
Diko, M. D ddc 650 bkl 50.16 bkl 85.38 misc monitoring mean and variance misc parameter estimation misc false alarm rate misc Shewhart misc multiple charting misc average run length misc Shewhart chart misc chart misc 3‐sigma limits Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited |
authorStr |
Diko, M. D |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129167614 |
format |
Article |
dewey-ones |
650 - Management & auxiliary services 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0748-8017 |
topic_title |
650 690 DNB 50.16 bkl 85.38 bkl Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited monitoring mean and variance parameter estimation false alarm rate Shewhart multiple charting average run length Shewhart chart chart 3‐sigma limits |
topic |
ddc 650 bkl 50.16 bkl 85.38 misc monitoring mean and variance misc parameter estimation misc false alarm rate misc Shewhart misc multiple charting misc average run length misc Shewhart chart misc chart misc 3‐sigma limits |
topic_unstemmed |
ddc 650 bkl 50.16 bkl 85.38 misc monitoring mean and variance misc parameter estimation misc false alarm rate misc Shewhart misc multiple charting misc average run length misc Shewhart chart misc chart misc 3‐sigma limits |
topic_browse |
ddc 650 bkl 50.16 bkl 85.38 misc monitoring mean and variance misc parameter estimation misc false alarm rate misc Shewhart misc multiple charting misc average run length misc Shewhart chart misc chart misc 3‐sigma limits |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s c sc m a g ma mag |
hierarchy_parent_title |
Quality and reliability engineering international |
hierarchy_parent_id |
129167614 |
dewey-tens |
650 - Management & public relations 690 - Building & construction |
hierarchy_top_title |
Quality and reliability engineering international |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 |
title |
Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited |
ctrlnum |
(DE-627)OLC1973068249 (DE-599)GBVOLC1973068249 (PRQ)c2248-8262c6ecd63aae00bcf52051a8637969f035bde698848c0cfc584d6f76ad2b383 (KEY)0136540120160000032000200609monitoringtheprocessmeanwhenstandardsareunknownacl |
title_full |
Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited |
author_sort |
Diko, M. D |
journal |
Quality and reliability engineering international |
journalStr |
Quality and reliability engineering international |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
609 |
author_browse |
Diko, M. D |
container_volume |
32 |
class |
650 690 DNB 50.16 bkl 85.38 bkl |
format_se |
Aufsätze |
author-letter |
Diko, M. D |
doi_str_mv |
10.1002/qre.1776 |
dewey-full |
650 690 |
title_sort |
monitoring the process mean when standards are unknown: a classic problem revisited |
title_auth |
Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited |
abstract |
One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd. |
abstractGer |
One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd. |
abstract_unstemmed |
One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 |
container_issue |
2 |
title_short |
Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited |
url |
http://dx.doi.org/10.1002/qre.1776 http://onlinelibrary.wiley.com/doi/10.1002/qre.1776/abstract http://search.proquest.com/docview/1764092081 |
remote_bool |
false |
author2 |
Chakraborti, S Graham, M. A |
author2Str |
Chakraborti, S Graham, M. A |
ppnlink |
129167614 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/qre.1776 |
up_date |
2024-07-04T01:31:49.167Z |
_version_ |
1803610183872544768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1973068249</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220217093002.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/qre.1776</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1973068249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1973068249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c2248-8262c6ecd63aae00bcf52051a8637969f035bde698848c0cfc584d6f76ad2b383</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0136540120160000032000200609monitoringtheprocessmeanwhenstandardsareunknownacl</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="a">690</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Diko, M. D</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monitoring the Process Mean When Standards Are Unknown: A Classic Problem Revisited</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">One of the most common applications in statistical process monitoring is the use of control charts to monitor a process mean. In practice, this is often performed with a Shewhart chart along with a Shewhart R (or an S ) chart. Thus, two charts are typically used together, as a scheme, each using the 3‐sigma limits. Moreover, the process mean and standard deviation are often unknown and need to be estimated before monitoring can begin. We show that there are three major issues with this monitoring scheme described in most textbooks. The first issue is not accounting for the effects of parameter estimation, which is known to degrade chart performance. The second issue is the implicit assumption that the charting statistics are both normally distributed and, accordingly, using the 3‐sigma limits. The third issue is multiple charting, because two charts are used, in this scheme, at the same time. We illustrate the deleterious effects of these issues on the in‐control properties of the charting scheme and present a method for finding the correct charting constants taking proper account of these issues. Tables of the new charting constants are provided for some commonly used nominal in‐control average run length values and different sample sizes. This will aid in implementing the charting scheme correctly in practice. Examples are given along with a summary and some conclusions. Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monitoring mean and variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parameter estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">false alarm rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shewhart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multiple charting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">average run length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shewhart chart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chart</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3‐sigma limits</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborti, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Graham, M. A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quality and reliability engineering international</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1985</subfield><subfield code="g">32(2016), 2, Seite 609-622</subfield><subfield code="w">(DE-627)129167614</subfield><subfield code="w">(DE-600)50641-2</subfield><subfield code="w">(DE-576)028403312</subfield><subfield code="x">0748-8017</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:609-622</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/qre.1776</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/qre.1776/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1764092081</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.38</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">609-622</subfield></datafield></record></collection>
|
score |
7.4023724 |