Inhomogeneous radiative forcing of homogeneous greenhouse gases
Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and tempor...
Ausführliche Beschreibung
Autor*in: |
Huang, Yi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geophysical research / D - Washington, DC : Union, 1984, 121(2016), 6, Seite 2780-2789 |
---|---|
Übergeordnetes Werk: |
volume:121 ; year:2016 ; number:6 ; pages:2780-2789 |
Links: |
---|
DOI / URN: |
10.1002/2015JD024569 |
---|
Katalog-ID: |
OLC1973074613 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1973074613 | ||
003 | DE-627 | ||
005 | 20230714184051.0 | ||
007 | tu | ||
008 | 160427s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2015JD024569 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1973074613 | ||
035 | |a (DE-599)GBVOLC1973074613 | ||
035 | |a (PRQ)p723-1d651fef646b825a5b5fe39800cac566c3c7448f3c49c9aacb577020beb6dc9f0 | ||
035 | |a (KEY)0137985220160000121000602780inhomogeneousradiativeforcingofhomogeneousgreenhou | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
100 | 1 | |a Huang, Yi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Inhomogeneous radiative forcing of homogeneous greenhouse gases |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty | ||
540 | |a Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. | ||
650 | 4 | |a climate model | |
650 | 4 | |a radiative forcing | |
650 | 4 | |a greenhouse gas | |
650 | 4 | |a cloud radiative forcing | |
650 | 4 | |a energy transport | |
650 | 4 | |a carbon dioxide | |
650 | 4 | |a Gases | |
650 | 4 | |a Climate | |
700 | 1 | |a Tan, Xiaoxiao |4 oth | |
700 | 1 | |a Xia, Yan |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of geophysical research / D |d Washington, DC : Union, 1984 |g 121(2016), 6, Seite 2780-2789 |w (DE-627)130444391 |w (DE-600)710256-2 |w (DE-576)015978818 |x 2169-897X |7 nnns |
773 | 1 | 8 | |g volume:121 |g year:2016 |g number:6 |g pages:2780-2789 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2015JD024569 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2015JD024569/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1782284052 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_154 | ||
951 | |a AR | ||
952 | |d 121 |j 2016 |e 6 |h 2780-2789 |
author_variant |
y h yh |
---|---|
matchkey_str |
article:2169897X:2016----::nooeeurdaieocnohmgnos |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1002/2015JD024569 doi PQ20160430 (DE-627)OLC1973074613 (DE-599)GBVOLC1973074613 (PRQ)p723-1d651fef646b825a5b5fe39800cac566c3c7448f3c49c9aacb577020beb6dc9f0 (KEY)0137985220160000121000602780inhomogeneousradiativeforcingofhomogeneousgreenhou DE-627 ger DE-627 rakwb eng 550 DNB Huang, Yi verfasserin aut Inhomogeneous radiative forcing of homogeneous greenhouse gases 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. climate model radiative forcing greenhouse gas cloud radiative forcing energy transport carbon dioxide Gases Climate Tan, Xiaoxiao oth Xia, Yan oth Enthalten in Journal of geophysical research / D Washington, DC : Union, 1984 121(2016), 6, Seite 2780-2789 (DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 2169-897X nnns volume:121 year:2016 number:6 pages:2780-2789 http://dx.doi.org/10.1002/2015JD024569 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JD024569/abstract http://search.proquest.com/docview/1782284052 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 AR 121 2016 6 2780-2789 |
spelling |
10.1002/2015JD024569 doi PQ20160430 (DE-627)OLC1973074613 (DE-599)GBVOLC1973074613 (PRQ)p723-1d651fef646b825a5b5fe39800cac566c3c7448f3c49c9aacb577020beb6dc9f0 (KEY)0137985220160000121000602780inhomogeneousradiativeforcingofhomogeneousgreenhou DE-627 ger DE-627 rakwb eng 550 DNB Huang, Yi verfasserin aut Inhomogeneous radiative forcing of homogeneous greenhouse gases 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. climate model radiative forcing greenhouse gas cloud radiative forcing energy transport carbon dioxide Gases Climate Tan, Xiaoxiao oth Xia, Yan oth Enthalten in Journal of geophysical research / D Washington, DC : Union, 1984 121(2016), 6, Seite 2780-2789 (DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 2169-897X nnns volume:121 year:2016 number:6 pages:2780-2789 http://dx.doi.org/10.1002/2015JD024569 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JD024569/abstract http://search.proquest.com/docview/1782284052 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 AR 121 2016 6 2780-2789 |
allfields_unstemmed |
10.1002/2015JD024569 doi PQ20160430 (DE-627)OLC1973074613 (DE-599)GBVOLC1973074613 (PRQ)p723-1d651fef646b825a5b5fe39800cac566c3c7448f3c49c9aacb577020beb6dc9f0 (KEY)0137985220160000121000602780inhomogeneousradiativeforcingofhomogeneousgreenhou DE-627 ger DE-627 rakwb eng 550 DNB Huang, Yi verfasserin aut Inhomogeneous radiative forcing of homogeneous greenhouse gases 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. climate model radiative forcing greenhouse gas cloud radiative forcing energy transport carbon dioxide Gases Climate Tan, Xiaoxiao oth Xia, Yan oth Enthalten in Journal of geophysical research / D Washington, DC : Union, 1984 121(2016), 6, Seite 2780-2789 (DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 2169-897X nnns volume:121 year:2016 number:6 pages:2780-2789 http://dx.doi.org/10.1002/2015JD024569 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JD024569/abstract http://search.proquest.com/docview/1782284052 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 AR 121 2016 6 2780-2789 |
allfieldsGer |
10.1002/2015JD024569 doi PQ20160430 (DE-627)OLC1973074613 (DE-599)GBVOLC1973074613 (PRQ)p723-1d651fef646b825a5b5fe39800cac566c3c7448f3c49c9aacb577020beb6dc9f0 (KEY)0137985220160000121000602780inhomogeneousradiativeforcingofhomogeneousgreenhou DE-627 ger DE-627 rakwb eng 550 DNB Huang, Yi verfasserin aut Inhomogeneous radiative forcing of homogeneous greenhouse gases 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. climate model radiative forcing greenhouse gas cloud radiative forcing energy transport carbon dioxide Gases Climate Tan, Xiaoxiao oth Xia, Yan oth Enthalten in Journal of geophysical research / D Washington, DC : Union, 1984 121(2016), 6, Seite 2780-2789 (DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 2169-897X nnns volume:121 year:2016 number:6 pages:2780-2789 http://dx.doi.org/10.1002/2015JD024569 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JD024569/abstract http://search.proquest.com/docview/1782284052 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 AR 121 2016 6 2780-2789 |
allfieldsSound |
10.1002/2015JD024569 doi PQ20160430 (DE-627)OLC1973074613 (DE-599)GBVOLC1973074613 (PRQ)p723-1d651fef646b825a5b5fe39800cac566c3c7448f3c49c9aacb577020beb6dc9f0 (KEY)0137985220160000121000602780inhomogeneousradiativeforcingofhomogeneousgreenhou DE-627 ger DE-627 rakwb eng 550 DNB Huang, Yi verfasserin aut Inhomogeneous radiative forcing of homogeneous greenhouse gases 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved. climate model radiative forcing greenhouse gas cloud radiative forcing energy transport carbon dioxide Gases Climate Tan, Xiaoxiao oth Xia, Yan oth Enthalten in Journal of geophysical research / D Washington, DC : Union, 1984 121(2016), 6, Seite 2780-2789 (DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 2169-897X nnns volume:121 year:2016 number:6 pages:2780-2789 http://dx.doi.org/10.1002/2015JD024569 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JD024569/abstract http://search.proquest.com/docview/1782284052 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 AR 121 2016 6 2780-2789 |
language |
English |
source |
Enthalten in Journal of geophysical research / D 121(2016), 6, Seite 2780-2789 volume:121 year:2016 number:6 pages:2780-2789 |
sourceStr |
Enthalten in Journal of geophysical research / D 121(2016), 6, Seite 2780-2789 volume:121 year:2016 number:6 pages:2780-2789 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
climate model radiative forcing greenhouse gas cloud radiative forcing energy transport carbon dioxide Gases Climate |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of geophysical research / D |
authorswithroles_txt_mv |
Huang, Yi @@aut@@ Tan, Xiaoxiao @@oth@@ Xia, Yan @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130444391 |
dewey-sort |
3550 |
id |
OLC1973074613 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1973074613</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714184051.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2015JD024569</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1973074613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1973074613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p723-1d651fef646b825a5b5fe39800cac566c3c7448f3c49c9aacb577020beb6dc9f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0137985220160000121000602780inhomogeneousradiativeforcingofhomogeneousgreenhou</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inhomogeneous radiative forcing of homogeneous greenhouse gases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiative forcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">greenhouse gas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cloud radiative forcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy transport</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon dioxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Xiaoxiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Yan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geophysical research / D</subfield><subfield code="d">Washington, DC : Union, 1984</subfield><subfield code="g">121(2016), 6, Seite 2780-2789</subfield><subfield code="w">(DE-627)130444391</subfield><subfield code="w">(DE-600)710256-2</subfield><subfield code="w">(DE-576)015978818</subfield><subfield code="x">2169-897X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:2780-2789</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2015JD024569</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2015JD024569/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1782284052</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="h">2780-2789</subfield></datafield></record></collection>
|
author |
Huang, Yi |
spellingShingle |
Huang, Yi ddc 550 misc climate model misc radiative forcing misc greenhouse gas misc cloud radiative forcing misc energy transport misc carbon dioxide misc Gases misc Climate Inhomogeneous radiative forcing of homogeneous greenhouse gases |
authorStr |
Huang, Yi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130444391 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
2169-897X |
topic_title |
550 DNB Inhomogeneous radiative forcing of homogeneous greenhouse gases climate model radiative forcing greenhouse gas cloud radiative forcing energy transport carbon dioxide Gases Climate |
topic |
ddc 550 misc climate model misc radiative forcing misc greenhouse gas misc cloud radiative forcing misc energy transport misc carbon dioxide misc Gases misc Climate |
topic_unstemmed |
ddc 550 misc climate model misc radiative forcing misc greenhouse gas misc cloud radiative forcing misc energy transport misc carbon dioxide misc Gases misc Climate |
topic_browse |
ddc 550 misc climate model misc radiative forcing misc greenhouse gas misc cloud radiative forcing misc energy transport misc carbon dioxide misc Gases misc Climate |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
x t xt y x yx |
hierarchy_parent_title |
Journal of geophysical research / D |
hierarchy_parent_id |
130444391 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of geophysical research / D |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130444391 (DE-600)710256-2 (DE-576)015978818 |
title |
Inhomogeneous radiative forcing of homogeneous greenhouse gases |
ctrlnum |
(DE-627)OLC1973074613 (DE-599)GBVOLC1973074613 (PRQ)p723-1d651fef646b825a5b5fe39800cac566c3c7448f3c49c9aacb577020beb6dc9f0 (KEY)0137985220160000121000602780inhomogeneousradiativeforcingofhomogeneousgreenhou |
title_full |
Inhomogeneous radiative forcing of homogeneous greenhouse gases |
author_sort |
Huang, Yi |
journal |
Journal of geophysical research / D |
journalStr |
Journal of geophysical research / D |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
2780 |
author_browse |
Huang, Yi |
container_volume |
121 |
class |
550 DNB |
format_se |
Aufsätze |
author-letter |
Huang, Yi |
doi_str_mv |
10.1002/2015JD024569 |
dewey-full |
550 |
title_sort |
inhomogeneous radiative forcing of homogeneous greenhouse gases |
title_auth |
Inhomogeneous radiative forcing of homogeneous greenhouse gases |
abstract |
Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty |
abstractGer |
Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty |
abstract_unstemmed |
Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_154 |
container_issue |
6 |
title_short |
Inhomogeneous radiative forcing of homogeneous greenhouse gases |
url |
http://dx.doi.org/10.1002/2015JD024569 http://onlinelibrary.wiley.com/doi/10.1002/2015JD024569/abstract http://search.proquest.com/docview/1782284052 |
remote_bool |
false |
author2 |
Tan, Xiaoxiao Xia, Yan |
author2Str |
Tan, Xiaoxiao Xia, Yan |
ppnlink |
130444391 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/2015JD024569 |
up_date |
2024-07-04T01:33:00.385Z |
_version_ |
1803610258550030336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1973074613</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714184051.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160427s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2015JD024569</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1973074613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1973074613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p723-1d651fef646b825a5b5fe39800cac566c3c7448f3c49c9aacb577020beb6dc9f0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0137985220160000121000602780inhomogeneousradiativeforcingofhomogeneousgreenhou</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Huang, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inhomogeneous radiative forcing of homogeneous greenhouse gases</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Radiative forcing of a homogeneous greenhouse gas (HGG) can be very inhomogeneous because the forcing is dependent on other atmospheric and surface variables. In the case of doubling CO 2 , the monthly mean instantaneous forcing at the top of the atmosphere is found to vary geographically and temporally from positive to negative values, with the range (−2.5–5.1 W m −2 ) being more than 3 times the magnitude of the global mean value (2.3 W m −2 ). The vertical temperature change across the atmospheric column (temperature lapse rate) is found to be the best single predictor for explaining forcing variation. In addition, the masking effects of clouds and water vapor also contribute to forcing inhomogeneity. A regression model that predicts forcing from geophysical variables is constructed. This model can explain more than 90% of the variance of the forcing. Applying this model to analyzing the forcing variation in the Climate Model Intercomparison Project Phase 5 models, we find that intermodel discrepancy in CO 2 forcing caused by model climatology leads to considerable discrepancy in their projected change in poleward energy transport. HGG forcing is dependent on model climatology Forcing variation is most explained by temperature lapse rate Forcing distribution uncertainty leads to considerable circulation projection uncertainty</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © 2016. American Geophysical Union. All Rights Reserved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">climate model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radiative forcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">greenhouse gas</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cloud radiative forcing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energy transport</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">carbon dioxide</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Xiaoxiao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Yan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geophysical research / D</subfield><subfield code="d">Washington, DC : Union, 1984</subfield><subfield code="g">121(2016), 6, Seite 2780-2789</subfield><subfield code="w">(DE-627)130444391</subfield><subfield code="w">(DE-600)710256-2</subfield><subfield code="w">(DE-576)015978818</subfield><subfield code="x">2169-897X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:6</subfield><subfield code="g">pages:2780-2789</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2015JD024569</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2015JD024569/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1782284052</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_154</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield><subfield code="j">2016</subfield><subfield code="e">6</subfield><subfield code="h">2780-2789</subfield></datafield></record></collection>
|
score |
7.401453 |