Non-commutative Nash inequalities
A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequaliti...
Ausführliche Beschreibung
Autor*in: |
Michael Kastoryano [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical physics - Melville, NY : American Institute of Physics, 1960, 57(2016), 1, Seite 1 |
---|---|
Übergeordnetes Werk: |
volume:57 ; year:2016 ; number:1 ; pages:1 |
Links: |
---|
DOI / URN: |
10.1063/1.4937382 |
---|
Katalog-ID: |
OLC197348045X |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC197348045X | ||
003 | DE-627 | ||
005 | 20220221225705.0 | ||
007 | tu | ||
008 | 160430s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1063/1.4937382 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC197348045X | ||
035 | |a (DE-599)GBVOLC197348045X | ||
035 | |a (PRQ)a1558-e9312b989683c907dd3cca96213de776c7a8b36c3d514cbdec6969a889c2e2b40 | ||
035 | |a (KEY)0000548720160000057000100001noncommutativenashinequalities | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 510 |q DNB |
084 | |a UA 4660 |q AVZ |2 rvk | ||
100 | 0 | |a Michael Kastoryano |e verfasserin |4 aut | |
245 | 1 | 0 | |a Non-commutative Nash inequalities |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.) | ||
650 | 4 | |a Markov analysis | |
650 | 4 | |a Quantum physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Mathematical Physics | |
700 | 0 | |a Kristan Temme |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical physics |d Melville, NY : American Institute of Physics, 1960 |g 57(2016), 1, Seite 1 |w (DE-627)129549703 |w (DE-600)219135-0 |w (DE-576)01500290X |x 0022-2488 |7 nnns |
773 | 1 | 8 | |g volume:57 |g year:2016 |g number:1 |g pages:1 |
856 | 4 | 1 | |u http://dx.doi.org/10.1063/1.4937382 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1767141260 |
856 | 4 | 2 | |u http://arxiv.org/abs/1508.02522 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2192 | ||
912 | |a GBV_ILN_2279 | ||
936 | r | v | |a UA 4660 |
951 | |a AR | ||
952 | |d 57 |j 2016 |e 1 |h 1 |
author_variant |
m k mk |
---|---|
matchkey_str |
article:00222488:2016----::ocmuaieahn |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1063/1.4937382 doi PQ20160430 (DE-627)OLC197348045X (DE-599)GBVOLC197348045X (PRQ)a1558-e9312b989683c907dd3cca96213de776c7a8b36c3d514cbdec6969a889c2e2b40 (KEY)0000548720160000057000100001noncommutativenashinequalities DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Michael Kastoryano verfasserin aut Non-commutative Nash inequalities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.) Markov analysis Quantum physics Quantum theory Quantum Physics Mathematical Physics Kristan Temme oth Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 57(2016), 1, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:57 year:2016 number:1 pages:1 http://dx.doi.org/10.1063/1.4937382 Volltext http://search.proquest.com/docview/1767141260 http://arxiv.org/abs/1508.02522 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 57 2016 1 1 |
spelling |
10.1063/1.4937382 doi PQ20160430 (DE-627)OLC197348045X (DE-599)GBVOLC197348045X (PRQ)a1558-e9312b989683c907dd3cca96213de776c7a8b36c3d514cbdec6969a889c2e2b40 (KEY)0000548720160000057000100001noncommutativenashinequalities DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Michael Kastoryano verfasserin aut Non-commutative Nash inequalities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.) Markov analysis Quantum physics Quantum theory Quantum Physics Mathematical Physics Kristan Temme oth Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 57(2016), 1, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:57 year:2016 number:1 pages:1 http://dx.doi.org/10.1063/1.4937382 Volltext http://search.proquest.com/docview/1767141260 http://arxiv.org/abs/1508.02522 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 57 2016 1 1 |
allfields_unstemmed |
10.1063/1.4937382 doi PQ20160430 (DE-627)OLC197348045X (DE-599)GBVOLC197348045X (PRQ)a1558-e9312b989683c907dd3cca96213de776c7a8b36c3d514cbdec6969a889c2e2b40 (KEY)0000548720160000057000100001noncommutativenashinequalities DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Michael Kastoryano verfasserin aut Non-commutative Nash inequalities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.) Markov analysis Quantum physics Quantum theory Quantum Physics Mathematical Physics Kristan Temme oth Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 57(2016), 1, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:57 year:2016 number:1 pages:1 http://dx.doi.org/10.1063/1.4937382 Volltext http://search.proquest.com/docview/1767141260 http://arxiv.org/abs/1508.02522 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 57 2016 1 1 |
allfieldsGer |
10.1063/1.4937382 doi PQ20160430 (DE-627)OLC197348045X (DE-599)GBVOLC197348045X (PRQ)a1558-e9312b989683c907dd3cca96213de776c7a8b36c3d514cbdec6969a889c2e2b40 (KEY)0000548720160000057000100001noncommutativenashinequalities DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Michael Kastoryano verfasserin aut Non-commutative Nash inequalities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.) Markov analysis Quantum physics Quantum theory Quantum Physics Mathematical Physics Kristan Temme oth Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 57(2016), 1, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:57 year:2016 number:1 pages:1 http://dx.doi.org/10.1063/1.4937382 Volltext http://search.proquest.com/docview/1767141260 http://arxiv.org/abs/1508.02522 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 57 2016 1 1 |
allfieldsSound |
10.1063/1.4937382 doi PQ20160430 (DE-627)OLC197348045X (DE-599)GBVOLC197348045X (PRQ)a1558-e9312b989683c907dd3cca96213de776c7a8b36c3d514cbdec6969a889c2e2b40 (KEY)0000548720160000057000100001noncommutativenashinequalities DE-627 ger DE-627 rakwb eng 530 510 DNB UA 4660 AVZ rvk Michael Kastoryano verfasserin aut Non-commutative Nash inequalities 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.) Markov analysis Quantum physics Quantum theory Quantum Physics Mathematical Physics Kristan Temme oth Enthalten in Journal of mathematical physics Melville, NY : American Institute of Physics, 1960 57(2016), 1, Seite 1 (DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X 0022-2488 nnns volume:57 year:2016 number:1 pages:1 http://dx.doi.org/10.1063/1.4937382 Volltext http://search.proquest.com/docview/1767141260 http://arxiv.org/abs/1508.02522 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 UA 4660 AR 57 2016 1 1 |
language |
English |
source |
Enthalten in Journal of mathematical physics 57(2016), 1, Seite 1 volume:57 year:2016 number:1 pages:1 |
sourceStr |
Enthalten in Journal of mathematical physics 57(2016), 1, Seite 1 volume:57 year:2016 number:1 pages:1 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Markov analysis Quantum physics Quantum theory Quantum Physics Mathematical Physics |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical physics |
authorswithroles_txt_mv |
Michael Kastoryano @@aut@@ Kristan Temme @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129549703 |
dewey-sort |
3530 |
id |
OLC197348045X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197348045X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221225705.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4937382</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197348045X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197348045X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1558-e9312b989683c907dd3cca96213de776c7a8b36c3d514cbdec6969a889c2e2b40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0000548720160000057000100001noncommutativenashinequalities</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 4660</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Michael Kastoryano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-commutative Nash inequalities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kristan Temme</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical physics</subfield><subfield code="d">Melville, NY : American Institute of Physics, 1960</subfield><subfield code="g">57(2016), 1, Seite 1</subfield><subfield code="w">(DE-627)129549703</subfield><subfield code="w">(DE-600)219135-0</subfield><subfield code="w">(DE-576)01500290X</subfield><subfield code="x">0022-2488</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4937382</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1767141260</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1508.02522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 4660</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">1</subfield></datafield></record></collection>
|
author |
Michael Kastoryano |
spellingShingle |
Michael Kastoryano ddc 530 rvk UA 4660 misc Markov analysis misc Quantum physics misc Quantum theory misc Quantum Physics misc Mathematical Physics Non-commutative Nash inequalities |
authorStr |
Michael Kastoryano |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129549703 |
format |
Article |
dewey-ones |
530 - Physics 510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-2488 |
topic_title |
530 510 DNB UA 4660 AVZ rvk Non-commutative Nash inequalities Markov analysis Quantum physics Quantum theory Quantum Physics Mathematical Physics |
topic |
ddc 530 rvk UA 4660 misc Markov analysis misc Quantum physics misc Quantum theory misc Quantum Physics misc Mathematical Physics |
topic_unstemmed |
ddc 530 rvk UA 4660 misc Markov analysis misc Quantum physics misc Quantum theory misc Quantum Physics misc Mathematical Physics |
topic_browse |
ddc 530 rvk UA 4660 misc Markov analysis misc Quantum physics misc Quantum theory misc Quantum Physics misc Mathematical Physics |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
k t kt |
hierarchy_parent_title |
Journal of mathematical physics |
hierarchy_parent_id |
129549703 |
dewey-tens |
530 - Physics 510 - Mathematics |
hierarchy_top_title |
Journal of mathematical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129549703 (DE-600)219135-0 (DE-576)01500290X |
title |
Non-commutative Nash inequalities |
ctrlnum |
(DE-627)OLC197348045X (DE-599)GBVOLC197348045X (PRQ)a1558-e9312b989683c907dd3cca96213de776c7a8b36c3d514cbdec6969a889c2e2b40 (KEY)0000548720160000057000100001noncommutativenashinequalities |
title_full |
Non-commutative Nash inequalities |
author_sort |
Michael Kastoryano |
journal |
Journal of mathematical physics |
journalStr |
Journal of mathematical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Michael Kastoryano |
container_volume |
57 |
class |
530 510 DNB UA 4660 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Michael Kastoryano |
doi_str_mv |
10.1063/1.4937382 |
dewey-full |
530 510 |
title_sort |
non-commutative nash inequalities |
title_auth |
Non-commutative Nash inequalities |
abstract |
A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.) |
abstractGer |
A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.) |
abstract_unstemmed |
A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.) |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_21 GBV_ILN_59 GBV_ILN_70 GBV_ILN_2088 GBV_ILN_2192 GBV_ILN_2279 |
container_issue |
1 |
title_short |
Non-commutative Nash inequalities |
url |
http://dx.doi.org/10.1063/1.4937382 http://search.proquest.com/docview/1767141260 http://arxiv.org/abs/1508.02522 |
remote_bool |
false |
author2 |
Kristan Temme |
author2Str |
Kristan Temme |
ppnlink |
129549703 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1063/1.4937382 |
up_date |
2024-07-04T02:32:19.960Z |
_version_ |
1803613991037042688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC197348045X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221225705.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4937382</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC197348045X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC197348045X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)a1558-e9312b989683c907dd3cca96213de776c7a8b36c3d514cbdec6969a889c2e2b40</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0000548720160000057000100001noncommutativenashinequalities</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 4660</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Michael Kastoryano</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-commutative Nash inequalities</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A set of functional inequalities -- called Nash inequalities -- are introduced and analyzed in the context of quantum Markov process mixing. The basic theory of Nash inequalities is extended to the setting of non-commutative ... spaces, where their relationship to Poincare and log-Sobolev inequalities is fleshed out. We prove Nash inequalities for a number of unital reversible semigroups. (ProQuest: ... denotes formulae/symbols omitted.)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Markov analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Physics</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Kristan Temme</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical physics</subfield><subfield code="d">Melville, NY : American Institute of Physics, 1960</subfield><subfield code="g">57(2016), 1, Seite 1</subfield><subfield code="w">(DE-627)129549703</subfield><subfield code="w">(DE-600)219135-0</subfield><subfield code="w">(DE-576)01500290X</subfield><subfield code="x">0022-2488</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:1</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4937382</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1767141260</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://arxiv.org/abs/1508.02522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2192</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 4660</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">1</subfield></datafield></record></collection>
|
score |
7.401454 |