Batch Codes Through Dense Graphs Without Short Cycles
Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We s...
Ausführliche Beschreibung
Autor*in: |
Rawat, Ankit Singh [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on information theory - Piscataway, NJ : IEEE, 1963, 62(2016), 4, Seite 1592-1604 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2016 ; number:4 ; pages:1592-1604 |
Links: |
---|
DOI / URN: |
10.1109/TIT.2016.2524007 |
---|
Katalog-ID: |
OLC1973604671 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1973604671 | ||
003 | DE-627 | ||
005 | 20220221163300.0 | ||
007 | tu | ||
008 | 160430s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIT.2016.2524007 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1973604671 | ||
035 | |a (DE-599)GBVOLC1973604671 | ||
035 | |a (PRQ)i582-f6c22943f853b21dd3da4922f821e45ce453c7e61766e5fe19a9cadc4cc6fd450 | ||
035 | |a (KEY)0023448620160000062000401592batchcodesthroughdensegraphswithoutshortcycles | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 620 |q DNB |
084 | |a SA 5570 |q AVZ |2 rvk | ||
100 | 1 | |a Rawat, Ankit Singh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Batch Codes Through Dense Graphs Without Short Cycles |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes. | ||
650 | 4 | |a Fault tolerant systems | |
650 | 4 | |a coding for distributed storage | |
650 | 4 | |a codes with locality | |
650 | 4 | |a Context | |
650 | 4 | |a Decoding | |
650 | 4 | |a Bipartite graph | |
650 | 4 | |a Servers | |
650 | 4 | |a Batch codes | |
650 | 4 | |a Fault tolerance | |
650 | 4 | |a Systematics | |
650 | 4 | |a coding for parallel accesses | |
650 | 4 | |a availability | |
650 | 4 | |a Codes | |
650 | 4 | |a Graph algorithms | |
650 | 4 | |a Asymptotic methods | |
650 | 4 | |a Information theory | |
700 | 1 | |a Song, Zhao |4 oth | |
700 | 1 | |a Dimakis, Alexandros G |4 oth | |
700 | 1 | |a Gal, Anna |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on information theory |d Piscataway, NJ : IEEE, 1963 |g 62(2016), 4, Seite 1592-1604 |w (DE-627)12954731X |w (DE-600)218505-2 |w (DE-576)01499819X |x 0018-9448 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2016 |g number:4 |g pages:1592-1604 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIT.2016.2524007 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7396954 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2088 | ||
936 | r | v | |a SA 5570 |
951 | |a AR | ||
952 | |d 62 |j 2016 |e 4 |h 1592-1604 |
author_variant |
a s r as asr |
---|---|
matchkey_str |
article:00189448:2016----::accdshogdnerpsih |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TIT.2016.2524007 doi PQ20160430 (DE-627)OLC1973604671 (DE-599)GBVOLC1973604671 (PRQ)i582-f6c22943f853b21dd3da4922f821e45ce453c7e61766e5fe19a9cadc4cc6fd450 (KEY)0023448620160000062000401592batchcodesthroughdensegraphswithoutshortcycles DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Rawat, Ankit Singh verfasserin aut Batch Codes Through Dense Graphs Without Short Cycles 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes. Fault tolerant systems coding for distributed storage codes with locality Context Decoding Bipartite graph Servers Batch codes Fault tolerance Systematics coding for parallel accesses availability Codes Graph algorithms Asymptotic methods Information theory Song, Zhao oth Dimakis, Alexandros G oth Gal, Anna oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 62(2016), 4, Seite 1592-1604 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:62 year:2016 number:4 pages:1592-1604 http://dx.doi.org/10.1109/TIT.2016.2524007 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7396954 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 62 2016 4 1592-1604 |
spelling |
10.1109/TIT.2016.2524007 doi PQ20160430 (DE-627)OLC1973604671 (DE-599)GBVOLC1973604671 (PRQ)i582-f6c22943f853b21dd3da4922f821e45ce453c7e61766e5fe19a9cadc4cc6fd450 (KEY)0023448620160000062000401592batchcodesthroughdensegraphswithoutshortcycles DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Rawat, Ankit Singh verfasserin aut Batch Codes Through Dense Graphs Without Short Cycles 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes. Fault tolerant systems coding for distributed storage codes with locality Context Decoding Bipartite graph Servers Batch codes Fault tolerance Systematics coding for parallel accesses availability Codes Graph algorithms Asymptotic methods Information theory Song, Zhao oth Dimakis, Alexandros G oth Gal, Anna oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 62(2016), 4, Seite 1592-1604 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:62 year:2016 number:4 pages:1592-1604 http://dx.doi.org/10.1109/TIT.2016.2524007 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7396954 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 62 2016 4 1592-1604 |
allfields_unstemmed |
10.1109/TIT.2016.2524007 doi PQ20160430 (DE-627)OLC1973604671 (DE-599)GBVOLC1973604671 (PRQ)i582-f6c22943f853b21dd3da4922f821e45ce453c7e61766e5fe19a9cadc4cc6fd450 (KEY)0023448620160000062000401592batchcodesthroughdensegraphswithoutshortcycles DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Rawat, Ankit Singh verfasserin aut Batch Codes Through Dense Graphs Without Short Cycles 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes. Fault tolerant systems coding for distributed storage codes with locality Context Decoding Bipartite graph Servers Batch codes Fault tolerance Systematics coding for parallel accesses availability Codes Graph algorithms Asymptotic methods Information theory Song, Zhao oth Dimakis, Alexandros G oth Gal, Anna oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 62(2016), 4, Seite 1592-1604 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:62 year:2016 number:4 pages:1592-1604 http://dx.doi.org/10.1109/TIT.2016.2524007 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7396954 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 62 2016 4 1592-1604 |
allfieldsGer |
10.1109/TIT.2016.2524007 doi PQ20160430 (DE-627)OLC1973604671 (DE-599)GBVOLC1973604671 (PRQ)i582-f6c22943f853b21dd3da4922f821e45ce453c7e61766e5fe19a9cadc4cc6fd450 (KEY)0023448620160000062000401592batchcodesthroughdensegraphswithoutshortcycles DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Rawat, Ankit Singh verfasserin aut Batch Codes Through Dense Graphs Without Short Cycles 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes. Fault tolerant systems coding for distributed storage codes with locality Context Decoding Bipartite graph Servers Batch codes Fault tolerance Systematics coding for parallel accesses availability Codes Graph algorithms Asymptotic methods Information theory Song, Zhao oth Dimakis, Alexandros G oth Gal, Anna oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 62(2016), 4, Seite 1592-1604 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:62 year:2016 number:4 pages:1592-1604 http://dx.doi.org/10.1109/TIT.2016.2524007 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7396954 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 62 2016 4 1592-1604 |
allfieldsSound |
10.1109/TIT.2016.2524007 doi PQ20160430 (DE-627)OLC1973604671 (DE-599)GBVOLC1973604671 (PRQ)i582-f6c22943f853b21dd3da4922f821e45ce453c7e61766e5fe19a9cadc4cc6fd450 (KEY)0023448620160000062000401592batchcodesthroughdensegraphswithoutshortcycles DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Rawat, Ankit Singh verfasserin aut Batch Codes Through Dense Graphs Without Short Cycles 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes. Fault tolerant systems coding for distributed storage codes with locality Context Decoding Bipartite graph Servers Batch codes Fault tolerance Systematics coding for parallel accesses availability Codes Graph algorithms Asymptotic methods Information theory Song, Zhao oth Dimakis, Alexandros G oth Gal, Anna oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 62(2016), 4, Seite 1592-1604 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:62 year:2016 number:4 pages:1592-1604 http://dx.doi.org/10.1109/TIT.2016.2524007 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7396954 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 62 2016 4 1592-1604 |
language |
English |
source |
Enthalten in IEEE transactions on information theory 62(2016), 4, Seite 1592-1604 volume:62 year:2016 number:4 pages:1592-1604 |
sourceStr |
Enthalten in IEEE transactions on information theory 62(2016), 4, Seite 1592-1604 volume:62 year:2016 number:4 pages:1592-1604 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Fault tolerant systems coding for distributed storage codes with locality Context Decoding Bipartite graph Servers Batch codes Fault tolerance Systematics coding for parallel accesses availability Codes Graph algorithms Asymptotic methods Information theory |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on information theory |
authorswithroles_txt_mv |
Rawat, Ankit Singh @@aut@@ Song, Zhao @@oth@@ Dimakis, Alexandros G @@oth@@ Gal, Anna @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
12954731X |
dewey-sort |
270 |
id |
OLC1973604671 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1973604671</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221163300.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIT.2016.2524007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1973604671</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1973604671</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i582-f6c22943f853b21dd3da4922f821e45ce453c7e61766e5fe19a9cadc4cc6fd450</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023448620160000062000401592batchcodesthroughdensegraphswithoutshortcycles</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5570</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rawat, Ankit Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Batch Codes Through Dense Graphs Without Short Cycles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault tolerant systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coding for distributed storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">codes with locality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Context</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipartite graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Servers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Batch codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault tolerance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coding for parallel accesses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">availability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Zhao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dimakis, Alexandros G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gal, Anna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on information theory</subfield><subfield code="d">Piscataway, NJ : IEEE, 1963</subfield><subfield code="g">62(2016), 4, Seite 1592-1604</subfield><subfield code="w">(DE-627)12954731X</subfield><subfield code="w">(DE-600)218505-2</subfield><subfield code="w">(DE-576)01499819X</subfield><subfield code="x">0018-9448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1592-1604</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIT.2016.2524007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7396954</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5570</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">1592-1604</subfield></datafield></record></collection>
|
author |
Rawat, Ankit Singh |
spellingShingle |
Rawat, Ankit Singh ddc 070 rvk SA 5570 misc Fault tolerant systems misc coding for distributed storage misc codes with locality misc Context misc Decoding misc Bipartite graph misc Servers misc Batch codes misc Fault tolerance misc Systematics misc coding for parallel accesses misc availability misc Codes misc Graph algorithms misc Asymptotic methods misc Information theory Batch Codes Through Dense Graphs Without Short Cycles |
authorStr |
Rawat, Ankit Singh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12954731X |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9448 |
topic_title |
070 620 DNB SA 5570 AVZ rvk Batch Codes Through Dense Graphs Without Short Cycles Fault tolerant systems coding for distributed storage codes with locality Context Decoding Bipartite graph Servers Batch codes Fault tolerance Systematics coding for parallel accesses availability Codes Graph algorithms Asymptotic methods Information theory |
topic |
ddc 070 rvk SA 5570 misc Fault tolerant systems misc coding for distributed storage misc codes with locality misc Context misc Decoding misc Bipartite graph misc Servers misc Batch codes misc Fault tolerance misc Systematics misc coding for parallel accesses misc availability misc Codes misc Graph algorithms misc Asymptotic methods misc Information theory |
topic_unstemmed |
ddc 070 rvk SA 5570 misc Fault tolerant systems misc coding for distributed storage misc codes with locality misc Context misc Decoding misc Bipartite graph misc Servers misc Batch codes misc Fault tolerance misc Systematics misc coding for parallel accesses misc availability misc Codes misc Graph algorithms misc Asymptotic methods misc Information theory |
topic_browse |
ddc 070 rvk SA 5570 misc Fault tolerant systems misc coding for distributed storage misc codes with locality misc Context misc Decoding misc Bipartite graph misc Servers misc Batch codes misc Fault tolerance misc Systematics misc coding for parallel accesses misc availability misc Codes misc Graph algorithms misc Asymptotic methods misc Information theory |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
z s zs a g d ag agd a g ag |
hierarchy_parent_title |
IEEE transactions on information theory |
hierarchy_parent_id |
12954731X |
dewey-tens |
070 - News media, journalism & publishing 620 - Engineering |
hierarchy_top_title |
IEEE transactions on information theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X |
title |
Batch Codes Through Dense Graphs Without Short Cycles |
ctrlnum |
(DE-627)OLC1973604671 (DE-599)GBVOLC1973604671 (PRQ)i582-f6c22943f853b21dd3da4922f821e45ce453c7e61766e5fe19a9cadc4cc6fd450 (KEY)0023448620160000062000401592batchcodesthroughdensegraphswithoutshortcycles |
title_full |
Batch Codes Through Dense Graphs Without Short Cycles |
author_sort |
Rawat, Ankit Singh |
journal |
IEEE transactions on information theory |
journalStr |
IEEE transactions on information theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1592 |
author_browse |
Rawat, Ankit Singh |
container_volume |
62 |
class |
070 620 DNB SA 5570 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Rawat, Ankit Singh |
doi_str_mv |
10.1109/TIT.2016.2524007 |
dewey-full |
070 620 |
title_sort |
batch codes through dense graphs without short cycles |
title_auth |
Batch Codes Through Dense Graphs Without Short Cycles |
abstract |
Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes. |
abstractGer |
Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes. |
abstract_unstemmed |
Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 |
container_issue |
4 |
title_short |
Batch Codes Through Dense Graphs Without Short Cycles |
url |
http://dx.doi.org/10.1109/TIT.2016.2524007 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7396954 |
remote_bool |
false |
author2 |
Song, Zhao Dimakis, Alexandros G Gal, Anna |
author2Str |
Song, Zhao Dimakis, Alexandros G Gal, Anna |
ppnlink |
12954731X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TIT.2016.2524007 |
up_date |
2024-07-04T02:47:27.929Z |
_version_ |
1803614943116787712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1973604671</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221163300.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIT.2016.2524007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1973604671</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1973604671</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i582-f6c22943f853b21dd3da4922f821e45ce453c7e61766e5fe19a9cadc4cc6fd450</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023448620160000062000401592batchcodesthroughdensegraphswithoutshortcycles</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5570</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rawat, Ankit Singh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Batch Codes Through Dense Graphs Without Short Cycles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Consider a large database of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> data items that need to be stored using <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> servers. We study how to encode information so that a large number <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> of read requests can be performed in parallel, while the rate remains constant (and ideally approaches one). This problem is equivalent to the design of multiset batch codes introduced by Ishai et al. We give the families of multiset batch codes with asymptotically optimal rates of the form <inline-formula> <tex-math notation="LaTeX">1-1/\text {poly}(k) </tex-math></inline-formula> and a number of servers <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> scaling polynomially in the number of read requests <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>. An advantage of our batch code constructions over most previously known multiset batch codes is explicit and deterministic decoding algorithms and asymptotically optimal fault tolerance. Our main technical innovation is a graph-theoretic method of designing multiset batch codes using dense bipartite graphs with no small cycles. We modify prior graph constructions of dense, high-girth graphs to obtain our batch code results. We achieve close-to-optimal tradeoffs between the parameters for bipartite graph-based batch codes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault tolerant systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coding for distributed storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">codes with locality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Context</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipartite graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Servers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Batch codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fault tolerance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coding for parallel accesses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">availability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Zhao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dimakis, Alexandros G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gal, Anna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on information theory</subfield><subfield code="d">Piscataway, NJ : IEEE, 1963</subfield><subfield code="g">62(2016), 4, Seite 1592-1604</subfield><subfield code="w">(DE-627)12954731X</subfield><subfield code="w">(DE-600)218505-2</subfield><subfield code="w">(DE-576)01499819X</subfield><subfield code="x">0018-9448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1592-1604</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIT.2016.2524007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7396954</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5570</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">1592-1604</subfield></datafield></record></collection>
|
score |
7.4027348 |