Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction
Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switchin...
Ausführliche Beschreibung
Autor*in: |
Wang, You [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on electron devices - New York, NY : IEEE, 1963, 63(2016), 4, Seite 1762-1767 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2016 ; number:4 ; pages:1762-1767 |
Links: |
---|
DOI / URN: |
10.1109/TED.2016.2533438 |
---|
Katalog-ID: |
OLC1973863596 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1973863596 | ||
003 | DE-627 | ||
005 | 20210716083619.0 | ||
007 | tu | ||
008 | 160430s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TED.2016.2533438 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1973863596 | ||
035 | |a (DE-599)GBVOLC1973863596 | ||
035 | |a (PRQ)ieee_primary_0b00006484fd4e230 | ||
035 | |a (KEY)0079428720160000063000401762compactmodelofdielectricbreakdowninspintransfertor | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Wang, You |e verfasserin |4 aut | |
245 | 1 | 0 | |a Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits. | ||
650 | 4 | |a reliability analysis | |
650 | 4 | |a Resistance | |
650 | 4 | |a Dielectric breakdown | |
650 | 4 | |a switching voltage margin | |
650 | 4 | |a lifetime of magnetic tunnel junction (MTJ) | |
650 | 4 | |a Switches | |
650 | 4 | |a Integrated circuit modeling | |
650 | 4 | |a Breakdown probability | |
650 | 4 | |a Weibull distribution | |
650 | 4 | |a Magnetic tunneling | |
650 | 4 | |a Breakdown voltage | |
700 | 1 | |a Cai, Hao |4 oth | |
700 | 1 | |a Naviner, Lirida Alves de Barros |4 oth | |
700 | 1 | |a Zhang, Yue |4 oth | |
700 | 1 | |a Zhao, Xiaoxuan |4 oth | |
700 | 1 | |a Deng, Erya |4 oth | |
700 | 1 | |a Klein, Jacques-Olivier |4 oth | |
700 | 1 | |a Zhao, Weisheng |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on electron devices |d New York, NY : IEEE, 1963 |g 63(2016), 4, Seite 1762-1767 |w (DE-627)129602922 |w (DE-600)241634-7 |w (DE-576)015096734 |x 0018-9383 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2016 |g number:4 |g pages:1762-1767 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TED.2016.2533438 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7428914 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_4313 | ||
951 | |a AR | ||
952 | |d 63 |j 2016 |e 4 |h 1762-1767 |
author_variant |
y w yw |
---|---|
matchkey_str |
article:00189383:2016----::opcmdlfilcrcradwisitasetrum |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TED.2016.2533438 doi PQ20160430 (DE-627)OLC1973863596 (DE-599)GBVOLC1973863596 (PRQ)ieee_primary_0b00006484fd4e230 (KEY)0079428720160000063000401762compactmodelofdielectricbreakdowninspintransfertor DE-627 ger DE-627 rakwb eng 620 DNB Wang, You verfasserin aut Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits. reliability analysis Resistance Dielectric breakdown switching voltage margin lifetime of magnetic tunnel junction (MTJ) Switches Integrated circuit modeling Breakdown probability Weibull distribution Magnetic tunneling Breakdown voltage Cai, Hao oth Naviner, Lirida Alves de Barros oth Zhang, Yue oth Zhao, Xiaoxuan oth Deng, Erya oth Klein, Jacques-Olivier oth Zhao, Weisheng oth Enthalten in IEEE transactions on electron devices New York, NY : IEEE, 1963 63(2016), 4, Seite 1762-1767 (DE-627)129602922 (DE-600)241634-7 (DE-576)015096734 0018-9383 nnns volume:63 year:2016 number:4 pages:1762-1767 http://dx.doi.org/10.1109/TED.2016.2533438 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7428914 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 AR 63 2016 4 1762-1767 |
spelling |
10.1109/TED.2016.2533438 doi PQ20160430 (DE-627)OLC1973863596 (DE-599)GBVOLC1973863596 (PRQ)ieee_primary_0b00006484fd4e230 (KEY)0079428720160000063000401762compactmodelofdielectricbreakdowninspintransfertor DE-627 ger DE-627 rakwb eng 620 DNB Wang, You verfasserin aut Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits. reliability analysis Resistance Dielectric breakdown switching voltage margin lifetime of magnetic tunnel junction (MTJ) Switches Integrated circuit modeling Breakdown probability Weibull distribution Magnetic tunneling Breakdown voltage Cai, Hao oth Naviner, Lirida Alves de Barros oth Zhang, Yue oth Zhao, Xiaoxuan oth Deng, Erya oth Klein, Jacques-Olivier oth Zhao, Weisheng oth Enthalten in IEEE transactions on electron devices New York, NY : IEEE, 1963 63(2016), 4, Seite 1762-1767 (DE-627)129602922 (DE-600)241634-7 (DE-576)015096734 0018-9383 nnns volume:63 year:2016 number:4 pages:1762-1767 http://dx.doi.org/10.1109/TED.2016.2533438 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7428914 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 AR 63 2016 4 1762-1767 |
allfields_unstemmed |
10.1109/TED.2016.2533438 doi PQ20160430 (DE-627)OLC1973863596 (DE-599)GBVOLC1973863596 (PRQ)ieee_primary_0b00006484fd4e230 (KEY)0079428720160000063000401762compactmodelofdielectricbreakdowninspintransfertor DE-627 ger DE-627 rakwb eng 620 DNB Wang, You verfasserin aut Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits. reliability analysis Resistance Dielectric breakdown switching voltage margin lifetime of magnetic tunnel junction (MTJ) Switches Integrated circuit modeling Breakdown probability Weibull distribution Magnetic tunneling Breakdown voltage Cai, Hao oth Naviner, Lirida Alves de Barros oth Zhang, Yue oth Zhao, Xiaoxuan oth Deng, Erya oth Klein, Jacques-Olivier oth Zhao, Weisheng oth Enthalten in IEEE transactions on electron devices New York, NY : IEEE, 1963 63(2016), 4, Seite 1762-1767 (DE-627)129602922 (DE-600)241634-7 (DE-576)015096734 0018-9383 nnns volume:63 year:2016 number:4 pages:1762-1767 http://dx.doi.org/10.1109/TED.2016.2533438 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7428914 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 AR 63 2016 4 1762-1767 |
allfieldsGer |
10.1109/TED.2016.2533438 doi PQ20160430 (DE-627)OLC1973863596 (DE-599)GBVOLC1973863596 (PRQ)ieee_primary_0b00006484fd4e230 (KEY)0079428720160000063000401762compactmodelofdielectricbreakdowninspintransfertor DE-627 ger DE-627 rakwb eng 620 DNB Wang, You verfasserin aut Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits. reliability analysis Resistance Dielectric breakdown switching voltage margin lifetime of magnetic tunnel junction (MTJ) Switches Integrated circuit modeling Breakdown probability Weibull distribution Magnetic tunneling Breakdown voltage Cai, Hao oth Naviner, Lirida Alves de Barros oth Zhang, Yue oth Zhao, Xiaoxuan oth Deng, Erya oth Klein, Jacques-Olivier oth Zhao, Weisheng oth Enthalten in IEEE transactions on electron devices New York, NY : IEEE, 1963 63(2016), 4, Seite 1762-1767 (DE-627)129602922 (DE-600)241634-7 (DE-576)015096734 0018-9383 nnns volume:63 year:2016 number:4 pages:1762-1767 http://dx.doi.org/10.1109/TED.2016.2533438 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7428914 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 AR 63 2016 4 1762-1767 |
allfieldsSound |
10.1109/TED.2016.2533438 doi PQ20160430 (DE-627)OLC1973863596 (DE-599)GBVOLC1973863596 (PRQ)ieee_primary_0b00006484fd4e230 (KEY)0079428720160000063000401762compactmodelofdielectricbreakdowninspintransfertor DE-627 ger DE-627 rakwb eng 620 DNB Wang, You verfasserin aut Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits. reliability analysis Resistance Dielectric breakdown switching voltage margin lifetime of magnetic tunnel junction (MTJ) Switches Integrated circuit modeling Breakdown probability Weibull distribution Magnetic tunneling Breakdown voltage Cai, Hao oth Naviner, Lirida Alves de Barros oth Zhang, Yue oth Zhao, Xiaoxuan oth Deng, Erya oth Klein, Jacques-Olivier oth Zhao, Weisheng oth Enthalten in IEEE transactions on electron devices New York, NY : IEEE, 1963 63(2016), 4, Seite 1762-1767 (DE-627)129602922 (DE-600)241634-7 (DE-576)015096734 0018-9383 nnns volume:63 year:2016 number:4 pages:1762-1767 http://dx.doi.org/10.1109/TED.2016.2533438 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7428914 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 AR 63 2016 4 1762-1767 |
language |
English |
source |
Enthalten in IEEE transactions on electron devices 63(2016), 4, Seite 1762-1767 volume:63 year:2016 number:4 pages:1762-1767 |
sourceStr |
Enthalten in IEEE transactions on electron devices 63(2016), 4, Seite 1762-1767 volume:63 year:2016 number:4 pages:1762-1767 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
reliability analysis Resistance Dielectric breakdown switching voltage margin lifetime of magnetic tunnel junction (MTJ) Switches Integrated circuit modeling Breakdown probability Weibull distribution Magnetic tunneling Breakdown voltage |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on electron devices |
authorswithroles_txt_mv |
Wang, You @@aut@@ Cai, Hao @@oth@@ Naviner, Lirida Alves de Barros @@oth@@ Zhang, Yue @@oth@@ Zhao, Xiaoxuan @@oth@@ Deng, Erya @@oth@@ Klein, Jacques-Olivier @@oth@@ Zhao, Weisheng @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129602922 |
dewey-sort |
3620 |
id |
OLC1973863596 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1973863596</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716083619.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TED.2016.2533438</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1973863596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1973863596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)ieee_primary_0b00006484fd4e230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0079428720160000063000401762compactmodelofdielectricbreakdowninspintransfertor</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, You</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reliability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectric breakdown</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switching voltage margin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lifetime of magnetic tunnel junction (MTJ)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switches</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuit modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breakdown probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weibull distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic tunneling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breakdown voltage</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naviner, Lirida Alves de Barros</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Xiaoxuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Erya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klein, Jacques-Olivier</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Weisheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on electron devices</subfield><subfield code="d">New York, NY : IEEE, 1963</subfield><subfield code="g">63(2016), 4, Seite 1762-1767</subfield><subfield code="w">(DE-627)129602922</subfield><subfield code="w">(DE-600)241634-7</subfield><subfield code="w">(DE-576)015096734</subfield><subfield code="x">0018-9383</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1762-1767</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TED.2016.2533438</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7428914</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">1762-1767</subfield></datafield></record></collection>
|
author |
Wang, You |
spellingShingle |
Wang, You ddc 620 misc reliability analysis misc Resistance misc Dielectric breakdown misc switching voltage margin misc lifetime of magnetic tunnel junction (MTJ) misc Switches misc Integrated circuit modeling misc Breakdown probability misc Weibull distribution misc Magnetic tunneling misc Breakdown voltage Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction |
authorStr |
Wang, You |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129602922 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9383 |
topic_title |
620 DNB Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction reliability analysis Resistance Dielectric breakdown switching voltage margin lifetime of magnetic tunnel junction (MTJ) Switches Integrated circuit modeling Breakdown probability Weibull distribution Magnetic tunneling Breakdown voltage |
topic |
ddc 620 misc reliability analysis misc Resistance misc Dielectric breakdown misc switching voltage margin misc lifetime of magnetic tunnel junction (MTJ) misc Switches misc Integrated circuit modeling misc Breakdown probability misc Weibull distribution misc Magnetic tunneling misc Breakdown voltage |
topic_unstemmed |
ddc 620 misc reliability analysis misc Resistance misc Dielectric breakdown misc switching voltage margin misc lifetime of magnetic tunnel junction (MTJ) misc Switches misc Integrated circuit modeling misc Breakdown probability misc Weibull distribution misc Magnetic tunneling misc Breakdown voltage |
topic_browse |
ddc 620 misc reliability analysis misc Resistance misc Dielectric breakdown misc switching voltage margin misc lifetime of magnetic tunnel junction (MTJ) misc Switches misc Integrated circuit modeling misc Breakdown probability misc Weibull distribution misc Magnetic tunneling misc Breakdown voltage |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h c hc l a d b n ladb ladbn y z yz x z xz e d ed j o k jok w z wz |
hierarchy_parent_title |
IEEE transactions on electron devices |
hierarchy_parent_id |
129602922 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on electron devices |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129602922 (DE-600)241634-7 (DE-576)015096734 |
title |
Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction |
ctrlnum |
(DE-627)OLC1973863596 (DE-599)GBVOLC1973863596 (PRQ)ieee_primary_0b00006484fd4e230 (KEY)0079428720160000063000401762compactmodelofdielectricbreakdowninspintransfertor |
title_full |
Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction |
author_sort |
Wang, You |
journal |
IEEE transactions on electron devices |
journalStr |
IEEE transactions on electron devices |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1762 |
author_browse |
Wang, You |
container_volume |
63 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Wang, You |
doi_str_mv |
10.1109/TED.2016.2533438 |
dewey-full |
620 |
title_sort |
compact model of dielectric breakdown in spin-transfer torque magnetic tunnel junction |
title_auth |
Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction |
abstract |
Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits. |
abstractGer |
Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits. |
abstract_unstemmed |
Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT GBV_ILN_70 GBV_ILN_2004 GBV_ILN_4313 |
container_issue |
4 |
title_short |
Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction |
url |
http://dx.doi.org/10.1109/TED.2016.2533438 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7428914 |
remote_bool |
false |
author2 |
Cai, Hao Naviner, Lirida Alves de Barros Zhang, Yue Zhao, Xiaoxuan Deng, Erya Klein, Jacques-Olivier Zhao, Weisheng |
author2Str |
Cai, Hao Naviner, Lirida Alves de Barros Zhang, Yue Zhao, Xiaoxuan Deng, Erya Klein, Jacques-Olivier Zhao, Weisheng |
ppnlink |
129602922 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1109/TED.2016.2533438 |
up_date |
2024-07-04T03:17:29.602Z |
_version_ |
1803616832301563904 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1973863596</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20210716083619.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TED.2016.2533438</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1973863596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1973863596</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)ieee_primary_0b00006484fd4e230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0079428720160000063000401762compactmodelofdielectricbreakdowninspintransfertor</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, You</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compact Model of Dielectric Breakdown in Spin-Transfer Torque Magnetic Tunnel Junction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Spin-transfer torque magnetic tunnel junction (MTJ) is a promising candidate for nonvolatile memories thanks to its high speed, low power, infinite endurance, and easy integration with CMOS circuits. However, a relatively high current flowing through an MTJ is always required by most of the switching mechanisms, which results in a high electric field in the MTJ and a significant self-heating effect. This may lead to the dielectric breakdown of the ultrathin (<inline-formula> <tex-math notation="LaTeX">\sim 1 </tex-math></inline-formula> nm) oxide barrier in the MTJ and cause functional errors of hybrid CMOS/MTJ circuits. This paper analyzes the physical mechanisms of time-dependent dielectric breakdown (TDDB) in an oxide barrier and proposes an SPICE-compact model of the MTJ. The simulation results show great consistency with the experimental measurements. This model can be used to execute a more realistic design according to the constraints obtained from simulation. The users can estimate the lifetime, the operation voltage margin, and the failure probability caused by TDDB in the MTJ-based circuits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reliability analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Resistance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dielectric breakdown</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">switching voltage margin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lifetime of magnetic tunnel junction (MTJ)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Switches</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuit modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breakdown probability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Weibull distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic tunneling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Breakdown voltage</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naviner, Lirida Alves de Barros</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yue</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Xiaoxuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Erya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klein, Jacques-Olivier</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Weisheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on electron devices</subfield><subfield code="d">New York, NY : IEEE, 1963</subfield><subfield code="g">63(2016), 4, Seite 1762-1767</subfield><subfield code="w">(DE-627)129602922</subfield><subfield code="w">(DE-600)241634-7</subfield><subfield code="w">(DE-576)015096734</subfield><subfield code="x">0018-9383</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1762-1767</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TED.2016.2533438</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7428914</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">1762-1767</subfield></datafield></record></collection>
|
score |
7.401121 |