Tomographic image of a seismically active volcano: Mammoth Mountain, California
High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) o...
Ausführliche Beschreibung
Autor*in: |
Dawson, Phillip [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © Published 2015. This article is a US Government work and is in the public domain in the United States of America. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of geophysical research / B - Washington, DC : Union, 1978, 121(2016), 1, Seite 114-133 |
---|---|
Übergeordnetes Werk: |
volume:121 ; year:2016 ; number:1 ; pages:114-133 |
Links: |
---|
DOI / URN: |
10.1002/2015JB012537 |
---|
Katalog-ID: |
OLC1973934515 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1973934515 | ||
003 | DE-627 | ||
005 | 20220221191751.0 | ||
007 | tu | ||
008 | 160430s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/2015JB012537 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1973934515 | ||
035 | |a (DE-599)GBVOLC1973934515 | ||
035 | |a (PRQ)p965-81167d32d829096a812142d1e358707731c6340effc8aa3bab4cced16d653cf0 | ||
035 | |a (KEY)0108436420160000121000100114tomographicimageofaseismicallyactivevolcanomammoth | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DNB |
084 | |a 38.70 |2 bkl | ||
100 | 1 | |a Dawson, Phillip |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tomographic image of a seismically active volcano: Mammoth Mountain, California |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years | ||
540 | |a Nutzungsrecht: © Published 2015. This article is a US Government work and is in the public domain in the United States of America. | ||
650 | 4 | |a tomography | |
650 | 4 | |a liquid phase | |
650 | 4 | |a pore geometry | |
650 | 4 | |a Adult entertainment | |
700 | 1 | |a Chouet, Bernard |4 oth | |
700 | 1 | |a Pitt, Andrew |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Journal of geophysical research / B |d Washington, DC : Union, 1978 |g 121(2016), 1, Seite 114-133 |w (DE-627)129366382 |w (DE-600)161666-3 |w (DE-576)014740451 |x 0148-0227 |7 nnns |
773 | 1 | 8 | |g volume:121 |g year:2016 |g number:1 |g pages:114-133 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/2015JB012537 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/2015JB012537/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1765098414 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2279 | ||
936 | b | k | |a 38.70 |q AVZ |
951 | |a AR | ||
952 | |d 121 |j 2016 |e 1 |h 114-133 |
author_variant |
p d pd |
---|---|
matchkey_str |
article:01480227:2016----::oorpiiaefsimclycieocnmmoh |
hierarchy_sort_str |
2016 |
bklnumber |
38.70 |
publishDate |
2016 |
allfields |
10.1002/2015JB012537 doi PQ20160430 (DE-627)OLC1973934515 (DE-599)GBVOLC1973934515 (PRQ)p965-81167d32d829096a812142d1e358707731c6340effc8aa3bab4cced16d653cf0 (KEY)0108436420160000121000100114tomographicimageofaseismicallyactivevolcanomammoth DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Dawson, Phillip verfasserin aut Tomographic image of a seismically active volcano: Mammoth Mountain, California 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years Nutzungsrecht: © Published 2015. This article is a US Government work and is in the public domain in the United States of America. tomography liquid phase pore geometry Adult entertainment Chouet, Bernard oth Pitt, Andrew oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 121(2016), 1, Seite 114-133 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:121 year:2016 number:1 pages:114-133 http://dx.doi.org/10.1002/2015JB012537 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JB012537/abstract http://search.proquest.com/docview/1765098414 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 121 2016 1 114-133 |
spelling |
10.1002/2015JB012537 doi PQ20160430 (DE-627)OLC1973934515 (DE-599)GBVOLC1973934515 (PRQ)p965-81167d32d829096a812142d1e358707731c6340effc8aa3bab4cced16d653cf0 (KEY)0108436420160000121000100114tomographicimageofaseismicallyactivevolcanomammoth DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Dawson, Phillip verfasserin aut Tomographic image of a seismically active volcano: Mammoth Mountain, California 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years Nutzungsrecht: © Published 2015. This article is a US Government work and is in the public domain in the United States of America. tomography liquid phase pore geometry Adult entertainment Chouet, Bernard oth Pitt, Andrew oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 121(2016), 1, Seite 114-133 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:121 year:2016 number:1 pages:114-133 http://dx.doi.org/10.1002/2015JB012537 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JB012537/abstract http://search.proquest.com/docview/1765098414 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 121 2016 1 114-133 |
allfields_unstemmed |
10.1002/2015JB012537 doi PQ20160430 (DE-627)OLC1973934515 (DE-599)GBVOLC1973934515 (PRQ)p965-81167d32d829096a812142d1e358707731c6340effc8aa3bab4cced16d653cf0 (KEY)0108436420160000121000100114tomographicimageofaseismicallyactivevolcanomammoth DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Dawson, Phillip verfasserin aut Tomographic image of a seismically active volcano: Mammoth Mountain, California 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years Nutzungsrecht: © Published 2015. This article is a US Government work and is in the public domain in the United States of America. tomography liquid phase pore geometry Adult entertainment Chouet, Bernard oth Pitt, Andrew oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 121(2016), 1, Seite 114-133 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:121 year:2016 number:1 pages:114-133 http://dx.doi.org/10.1002/2015JB012537 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JB012537/abstract http://search.proquest.com/docview/1765098414 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 121 2016 1 114-133 |
allfieldsGer |
10.1002/2015JB012537 doi PQ20160430 (DE-627)OLC1973934515 (DE-599)GBVOLC1973934515 (PRQ)p965-81167d32d829096a812142d1e358707731c6340effc8aa3bab4cced16d653cf0 (KEY)0108436420160000121000100114tomographicimageofaseismicallyactivevolcanomammoth DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Dawson, Phillip verfasserin aut Tomographic image of a seismically active volcano: Mammoth Mountain, California 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years Nutzungsrecht: © Published 2015. This article is a US Government work and is in the public domain in the United States of America. tomography liquid phase pore geometry Adult entertainment Chouet, Bernard oth Pitt, Andrew oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 121(2016), 1, Seite 114-133 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:121 year:2016 number:1 pages:114-133 http://dx.doi.org/10.1002/2015JB012537 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JB012537/abstract http://search.proquest.com/docview/1765098414 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 121 2016 1 114-133 |
allfieldsSound |
10.1002/2015JB012537 doi PQ20160430 (DE-627)OLC1973934515 (DE-599)GBVOLC1973934515 (PRQ)p965-81167d32d829096a812142d1e358707731c6340effc8aa3bab4cced16d653cf0 (KEY)0108436420160000121000100114tomographicimageofaseismicallyactivevolcanomammoth DE-627 ger DE-627 rakwb eng 550 DNB 38.70 bkl Dawson, Phillip verfasserin aut Tomographic image of a seismically active volcano: Mammoth Mountain, California 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years Nutzungsrecht: © Published 2015. This article is a US Government work and is in the public domain in the United States of America. tomography liquid phase pore geometry Adult entertainment Chouet, Bernard oth Pitt, Andrew oth Enthalten in Journal of geophysical research / B Washington, DC : Union, 1978 121(2016), 1, Seite 114-133 (DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 0148-0227 nnns volume:121 year:2016 number:1 pages:114-133 http://dx.doi.org/10.1002/2015JB012537 Volltext http://onlinelibrary.wiley.com/doi/10.1002/2015JB012537/abstract http://search.proquest.com/docview/1765098414 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 38.70 AVZ AR 121 2016 1 114-133 |
language |
English |
source |
Enthalten in Journal of geophysical research / B 121(2016), 1, Seite 114-133 volume:121 year:2016 number:1 pages:114-133 |
sourceStr |
Enthalten in Journal of geophysical research / B 121(2016), 1, Seite 114-133 volume:121 year:2016 number:1 pages:114-133 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
tomography liquid phase pore geometry Adult entertainment |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of geophysical research / B |
authorswithroles_txt_mv |
Dawson, Phillip @@aut@@ Chouet, Bernard @@oth@@ Pitt, Andrew @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129366382 |
dewey-sort |
3550 |
id |
OLC1973934515 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1973934515</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221191751.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2015JB012537</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1973934515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1973934515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p965-81167d32d829096a812142d1e358707731c6340effc8aa3bab4cced16d653cf0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108436420160000121000100114tomographicimageofaseismicallyactivevolcanomammoth</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dawson, Phillip</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tomographic image of a seismically active volcano: Mammoth Mountain, California</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Published 2015. This article is a US Government work and is in the public domain in the United States of America.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pore geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adult entertainment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chouet, Bernard</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pitt, Andrew</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geophysical research / B</subfield><subfield code="d">Washington, DC : Union, 1978</subfield><subfield code="g">121(2016), 1, Seite 114-133</subfield><subfield code="w">(DE-627)129366382</subfield><subfield code="w">(DE-600)161666-3</subfield><subfield code="w">(DE-576)014740451</subfield><subfield code="x">0148-0227</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:114-133</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2015JB012537</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2015JB012537/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1765098414</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">114-133</subfield></datafield></record></collection>
|
author |
Dawson, Phillip |
spellingShingle |
Dawson, Phillip ddc 550 bkl 38.70 misc tomography misc liquid phase misc pore geometry misc Adult entertainment Tomographic image of a seismically active volcano: Mammoth Mountain, California |
authorStr |
Dawson, Phillip |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129366382 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0148-0227 |
topic_title |
550 DNB 38.70 bkl Tomographic image of a seismically active volcano: Mammoth Mountain, California tomography liquid phase pore geometry Adult entertainment |
topic |
ddc 550 bkl 38.70 misc tomography misc liquid phase misc pore geometry misc Adult entertainment |
topic_unstemmed |
ddc 550 bkl 38.70 misc tomography misc liquid phase misc pore geometry misc Adult entertainment |
topic_browse |
ddc 550 bkl 38.70 misc tomography misc liquid phase misc pore geometry misc Adult entertainment |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
b c bc a p ap |
hierarchy_parent_title |
Journal of geophysical research / B |
hierarchy_parent_id |
129366382 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of geophysical research / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129366382 (DE-600)161666-3 (DE-576)014740451 |
title |
Tomographic image of a seismically active volcano: Mammoth Mountain, California |
ctrlnum |
(DE-627)OLC1973934515 (DE-599)GBVOLC1973934515 (PRQ)p965-81167d32d829096a812142d1e358707731c6340effc8aa3bab4cced16d653cf0 (KEY)0108436420160000121000100114tomographicimageofaseismicallyactivevolcanomammoth |
title_full |
Tomographic image of a seismically active volcano: Mammoth Mountain, California |
author_sort |
Dawson, Phillip |
journal |
Journal of geophysical research / B |
journalStr |
Journal of geophysical research / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
114 |
author_browse |
Dawson, Phillip |
container_volume |
121 |
class |
550 DNB 38.70 bkl |
format_se |
Aufsätze |
author-letter |
Dawson, Phillip |
doi_str_mv |
10.1002/2015JB012537 |
dewey-full |
550 |
title_sort |
tomographic image of a seismically active volcano: mammoth mountain, california |
title_auth |
Tomographic image of a seismically active volcano: Mammoth Mountain, California |
abstract |
High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years |
abstractGer |
High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years |
abstract_unstemmed |
High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_62 GBV_ILN_2027 GBV_ILN_2279 |
container_issue |
1 |
title_short |
Tomographic image of a seismically active volcano: Mammoth Mountain, California |
url |
http://dx.doi.org/10.1002/2015JB012537 http://onlinelibrary.wiley.com/doi/10.1002/2015JB012537/abstract http://search.proquest.com/docview/1765098414 |
remote_bool |
false |
author2 |
Chouet, Bernard Pitt, Andrew |
author2Str |
Chouet, Bernard Pitt, Andrew |
ppnlink |
129366382 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1002/2015JB012537 |
up_date |
2024-07-04T03:26:05.219Z |
_version_ |
1803617372970418176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1973934515</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221191751.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/2015JB012537</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1973934515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1973934515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p965-81167d32d829096a812142d1e358707731c6340effc8aa3bab4cced16d653cf0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0108436420160000121000100114tomographicimageofaseismicallyactivevolcanomammoth</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dawson, Phillip</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tomographic image of a seismically active volcano: Mammoth Mountain, California</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High‐resolution tomographic P wave, S wave, and V P / V S velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 10 9 to 5.9 × 10 10 m 3 ) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO 2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10 −3 to 7.9 × 10 −3 (crack‐like pores) and mean gas volume fraction ϕ = 8.1 × 10 −4 to 3.4 × 10 −3 . The pore density parameter κ = 3 ϕ /(4 π α ) = n a 3 =0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO 2 is estimated to be 4.6 × 10 9 to 1.9 × 10 11 kg. The local geological structure indicates that the CO 2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO 2 contained in the reservoir suggests that given an emission rate of 500 tons day −1 , the reservoir could supply the emission of CO 2 for ∼25–1040 years before depletion. Continued supply of CO 2 from an underlying magmatic system would significantly prolong the existence of the reservoir. Fluid content and pore properties are derived from tomographic images Estimates of the amount of CO 2 beneath Mammoth Mountain range from 5E+9 to 2E+11 kg At 500 tons/day, the gas reservoir will emit CO 2 for ∼25 to ∼1040 years</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Published 2015. This article is a US Government work and is in the public domain in the United States of America.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tomography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid phase</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pore geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adult entertainment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chouet, Bernard</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pitt, Andrew</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of geophysical research / B</subfield><subfield code="d">Washington, DC : Union, 1978</subfield><subfield code="g">121(2016), 1, Seite 114-133</subfield><subfield code="w">(DE-627)129366382</subfield><subfield code="w">(DE-600)161666-3</subfield><subfield code="w">(DE-576)014740451</subfield><subfield code="x">0148-0227</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:114-133</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/2015JB012537</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/2015JB012537/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1765098414</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.70</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">114-133</subfield></datafield></record></collection>
|
score |
7.402237 |