A Control Chart for the Multivariate Coefficient of Variation
Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This...
Ausführliche Beschreibung
Autor*in: |
Yeong, Wai Chung [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Quality and reliability engineering international - Chichester [u.a.] : Wiley, 1985, 32(2016), 3, Seite 1213-1225 |
---|---|
Übergeordnetes Werk: |
volume:32 ; year:2016 ; number:3 ; pages:1213-1225 |
Links: |
---|
DOI / URN: |
10.1002/qre.1828 |
---|
Katalog-ID: |
OLC1974010341 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1974010341 | ||
003 | DE-627 | ||
005 | 20220217093004.0 | ||
007 | tu | ||
008 | 160430s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/qre.1828 |2 doi | |
028 | 5 | 2 | |a PQ20160610 |
035 | |a (DE-627)OLC1974010341 | ||
035 | |a (DE-599)GBVOLC1974010341 | ||
035 | |a (PRQ)p1554-910ea50633c6a9ebae6962978db3c3a5f1287cc35a5f41df40d9aba7e12e1fb23 | ||
035 | |a (KEY)0136540120160000032000301213controlchartforthemultivariatecoefficientofvariati | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 650 |a 690 |q DNB |
084 | |a 50.16 |2 bkl | ||
084 | |a 85.38 |2 bkl | ||
100 | 1 | |a Yeong, Wai Chung |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Control Chart for the Multivariate Coefficient of Variation |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. | ||
650 | 4 | |a average run length | |
650 | 4 | |a unknown shift size | |
650 | 4 | |a multivariate coefficient of variation | |
650 | 4 | |a relative variability | |
650 | 4 | |a expected average run length | |
700 | 1 | |a Khoo, Michael Boon Chong |4 oth | |
700 | 1 | |a Teoh, Wei Lin |4 oth | |
700 | 1 | |a Castagliola, Philippe |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Quality and reliability engineering international |d Chichester [u.a.] : Wiley, 1985 |g 32(2016), 3, Seite 1213-1225 |w (DE-627)129167614 |w (DE-600)50641-2 |w (DE-576)028403312 |x 0748-8017 |7 nnns |
773 | 1 | 8 | |g volume:32 |g year:2016 |g number:3 |g pages:1213-1225 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/qre.1828 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/qre.1828/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1774428921 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 50.16 |q AVZ |
936 | b | k | |a 85.38 |q AVZ |
951 | |a AR | ||
952 | |d 32 |j 2016 |e 3 |h 1213-1225 |
author_variant |
w c y wc wcy |
---|---|
matchkey_str |
article:07488017:2016----::cnrlhrfrhmliaitcefc |
hierarchy_sort_str |
2016 |
bklnumber |
50.16 85.38 |
publishDate |
2016 |
allfields |
10.1002/qre.1828 doi PQ20160610 (DE-627)OLC1974010341 (DE-599)GBVOLC1974010341 (PRQ)p1554-910ea50633c6a9ebae6962978db3c3a5f1287cc35a5f41df40d9aba7e12e1fb23 (KEY)0136540120160000032000301213controlchartforthemultivariatecoefficientofvariati DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Yeong, Wai Chung verfasserin aut A Control Chart for the Multivariate Coefficient of Variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. average run length unknown shift size multivariate coefficient of variation relative variability expected average run length Khoo, Michael Boon Chong oth Teoh, Wei Lin oth Castagliola, Philippe oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 32(2016), 3, Seite 1213-1225 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:32 year:2016 number:3 pages:1213-1225 http://dx.doi.org/10.1002/qre.1828 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.1828/abstract http://search.proquest.com/docview/1774428921 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 32 2016 3 1213-1225 |
spelling |
10.1002/qre.1828 doi PQ20160610 (DE-627)OLC1974010341 (DE-599)GBVOLC1974010341 (PRQ)p1554-910ea50633c6a9ebae6962978db3c3a5f1287cc35a5f41df40d9aba7e12e1fb23 (KEY)0136540120160000032000301213controlchartforthemultivariatecoefficientofvariati DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Yeong, Wai Chung verfasserin aut A Control Chart for the Multivariate Coefficient of Variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. average run length unknown shift size multivariate coefficient of variation relative variability expected average run length Khoo, Michael Boon Chong oth Teoh, Wei Lin oth Castagliola, Philippe oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 32(2016), 3, Seite 1213-1225 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:32 year:2016 number:3 pages:1213-1225 http://dx.doi.org/10.1002/qre.1828 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.1828/abstract http://search.proquest.com/docview/1774428921 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 32 2016 3 1213-1225 |
allfields_unstemmed |
10.1002/qre.1828 doi PQ20160610 (DE-627)OLC1974010341 (DE-599)GBVOLC1974010341 (PRQ)p1554-910ea50633c6a9ebae6962978db3c3a5f1287cc35a5f41df40d9aba7e12e1fb23 (KEY)0136540120160000032000301213controlchartforthemultivariatecoefficientofvariati DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Yeong, Wai Chung verfasserin aut A Control Chart for the Multivariate Coefficient of Variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. average run length unknown shift size multivariate coefficient of variation relative variability expected average run length Khoo, Michael Boon Chong oth Teoh, Wei Lin oth Castagliola, Philippe oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 32(2016), 3, Seite 1213-1225 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:32 year:2016 number:3 pages:1213-1225 http://dx.doi.org/10.1002/qre.1828 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.1828/abstract http://search.proquest.com/docview/1774428921 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 32 2016 3 1213-1225 |
allfieldsGer |
10.1002/qre.1828 doi PQ20160610 (DE-627)OLC1974010341 (DE-599)GBVOLC1974010341 (PRQ)p1554-910ea50633c6a9ebae6962978db3c3a5f1287cc35a5f41df40d9aba7e12e1fb23 (KEY)0136540120160000032000301213controlchartforthemultivariatecoefficientofvariati DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Yeong, Wai Chung verfasserin aut A Control Chart for the Multivariate Coefficient of Variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. average run length unknown shift size multivariate coefficient of variation relative variability expected average run length Khoo, Michael Boon Chong oth Teoh, Wei Lin oth Castagliola, Philippe oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 32(2016), 3, Seite 1213-1225 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:32 year:2016 number:3 pages:1213-1225 http://dx.doi.org/10.1002/qre.1828 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.1828/abstract http://search.proquest.com/docview/1774428921 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 32 2016 3 1213-1225 |
allfieldsSound |
10.1002/qre.1828 doi PQ20160610 (DE-627)OLC1974010341 (DE-599)GBVOLC1974010341 (PRQ)p1554-910ea50633c6a9ebae6962978db3c3a5f1287cc35a5f41df40d9aba7e12e1fb23 (KEY)0136540120160000032000301213controlchartforthemultivariatecoefficientofvariati DE-627 ger DE-627 rakwb eng 650 690 DNB 50.16 bkl 85.38 bkl Yeong, Wai Chung verfasserin aut A Control Chart for the Multivariate Coefficient of Variation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. average run length unknown shift size multivariate coefficient of variation relative variability expected average run length Khoo, Michael Boon Chong oth Teoh, Wei Lin oth Castagliola, Philippe oth Enthalten in Quality and reliability engineering international Chichester [u.a.] : Wiley, 1985 32(2016), 3, Seite 1213-1225 (DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 0748-8017 nnns volume:32 year:2016 number:3 pages:1213-1225 http://dx.doi.org/10.1002/qre.1828 Volltext http://onlinelibrary.wiley.com/doi/10.1002/qre.1828/abstract http://search.proquest.com/docview/1774428921 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 50.16 AVZ 85.38 AVZ AR 32 2016 3 1213-1225 |
language |
English |
source |
Enthalten in Quality and reliability engineering international 32(2016), 3, Seite 1213-1225 volume:32 year:2016 number:3 pages:1213-1225 |
sourceStr |
Enthalten in Quality and reliability engineering international 32(2016), 3, Seite 1213-1225 volume:32 year:2016 number:3 pages:1213-1225 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
average run length unknown shift size multivariate coefficient of variation relative variability expected average run length |
dewey-raw |
650 |
isfreeaccess_bool |
false |
container_title |
Quality and reliability engineering international |
authorswithroles_txt_mv |
Yeong, Wai Chung @@aut@@ Khoo, Michael Boon Chong @@oth@@ Teoh, Wei Lin @@oth@@ Castagliola, Philippe @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129167614 |
dewey-sort |
3650 |
id |
OLC1974010341 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974010341</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220217093004.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/qre.1828</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974010341</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974010341</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1554-910ea50633c6a9ebae6962978db3c3a5f1287cc35a5f41df40d9aba7e12e1fb23</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0136540120160000032000301213controlchartforthemultivariatecoefficientofvariati</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="a">690</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yeong, Wai Chung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Control Chart for the Multivariate Coefficient of Variation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">average run length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unknown shift size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariate coefficient of variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">relative variability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">expected average run length</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khoo, Michael Boon Chong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teoh, Wei Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castagliola, Philippe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quality and reliability engineering international</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1985</subfield><subfield code="g">32(2016), 3, Seite 1213-1225</subfield><subfield code="w">(DE-627)129167614</subfield><subfield code="w">(DE-600)50641-2</subfield><subfield code="w">(DE-576)028403312</subfield><subfield code="x">0748-8017</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1213-1225</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/qre.1828</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/qre.1828/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1774428921</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.38</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="h">1213-1225</subfield></datafield></record></collection>
|
author |
Yeong, Wai Chung |
spellingShingle |
Yeong, Wai Chung ddc 650 bkl 50.16 bkl 85.38 misc average run length misc unknown shift size misc multivariate coefficient of variation misc relative variability misc expected average run length A Control Chart for the Multivariate Coefficient of Variation |
authorStr |
Yeong, Wai Chung |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129167614 |
format |
Article |
dewey-ones |
650 - Management & auxiliary services 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0748-8017 |
topic_title |
650 690 DNB 50.16 bkl 85.38 bkl A Control Chart for the Multivariate Coefficient of Variation average run length unknown shift size multivariate coefficient of variation relative variability expected average run length |
topic |
ddc 650 bkl 50.16 bkl 85.38 misc average run length misc unknown shift size misc multivariate coefficient of variation misc relative variability misc expected average run length |
topic_unstemmed |
ddc 650 bkl 50.16 bkl 85.38 misc average run length misc unknown shift size misc multivariate coefficient of variation misc relative variability misc expected average run length |
topic_browse |
ddc 650 bkl 50.16 bkl 85.38 misc average run length misc unknown shift size misc multivariate coefficient of variation misc relative variability misc expected average run length |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m b c k mbc mbck w l t wl wlt p c pc |
hierarchy_parent_title |
Quality and reliability engineering international |
hierarchy_parent_id |
129167614 |
dewey-tens |
650 - Management & public relations 690 - Building & construction |
hierarchy_top_title |
Quality and reliability engineering international |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129167614 (DE-600)50641-2 (DE-576)028403312 |
title |
A Control Chart for the Multivariate Coefficient of Variation |
ctrlnum |
(DE-627)OLC1974010341 (DE-599)GBVOLC1974010341 (PRQ)p1554-910ea50633c6a9ebae6962978db3c3a5f1287cc35a5f41df40d9aba7e12e1fb23 (KEY)0136540120160000032000301213controlchartforthemultivariatecoefficientofvariati |
title_full |
A Control Chart for the Multivariate Coefficient of Variation |
author_sort |
Yeong, Wai Chung |
journal |
Quality and reliability engineering international |
journalStr |
Quality and reliability engineering international |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1213 |
author_browse |
Yeong, Wai Chung |
container_volume |
32 |
class |
650 690 DNB 50.16 bkl 85.38 bkl |
format_se |
Aufsätze |
author-letter |
Yeong, Wai Chung |
doi_str_mv |
10.1002/qre.1828 |
dewey-full |
650 690 |
title_sort |
control chart for the multivariate coefficient of variation |
title_auth |
A Control Chart for the Multivariate Coefficient of Variation |
abstract |
Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd. |
abstractGer |
Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd. |
abstract_unstemmed |
Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_70 |
container_issue |
3 |
title_short |
A Control Chart for the Multivariate Coefficient of Variation |
url |
http://dx.doi.org/10.1002/qre.1828 http://onlinelibrary.wiley.com/doi/10.1002/qre.1828/abstract http://search.proquest.com/docview/1774428921 |
remote_bool |
false |
author2 |
Khoo, Michael Boon Chong Teoh, Wei Lin Castagliola, Philippe |
author2Str |
Khoo, Michael Boon Chong Teoh, Wei Lin Castagliola, Philippe |
ppnlink |
129167614 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1002/qre.1828 |
up_date |
2024-07-04T03:35:54.404Z |
_version_ |
1803617990770425856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974010341</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220217093004.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/qre.1828</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974010341</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974010341</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1554-910ea50633c6a9ebae6962978db3c3a5f1287cc35a5f41df40d9aba7e12e1fb23</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0136540120160000032000301213controlchartforthemultivariatecoefficientofvariati</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">650</subfield><subfield code="a">690</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yeong, Wai Chung</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Control Chart for the Multivariate Coefficient of Variation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Existing charts in the literature usually monitor either the mean or the variance of the process. However, in certain scenarios, the practitioner is not interested in the changes in the mean or the variance but is instead interested in monitoring the relative variability compared with the mean. This relative variability is called the coefficient of variation (CV). In the existing literature, none of the control charts that monitor the CV are applied for multivariate data. To fill this gap in research, this paper proposes a CV chart that monitors the CV for multivariate data. To the best of the authors' knowledge, this proposed chart is the first control chart for this purpose. The distributional properties of the sample CV for multivariate data and the procedures to implement the chart are presented in this paper. Formulae to compute the control limits, the average run length, the standard deviation of the run length, and the expected average run length for the case of unknown shift size are derived. From the numerical examples provided, the effects of the number of variables, the sample size, the shift size and the in‐control value of the CV are studied. Finally, we demonstrate the usefulness and applicability of the proposed chart on real data. Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">average run length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">unknown shift size</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariate coefficient of variation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">relative variability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">expected average run length</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khoo, Michael Boon Chong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teoh, Wei Lin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castagliola, Philippe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Quality and reliability engineering international</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1985</subfield><subfield code="g">32(2016), 3, Seite 1213-1225</subfield><subfield code="w">(DE-627)129167614</subfield><subfield code="w">(DE-600)50641-2</subfield><subfield code="w">(DE-576)028403312</subfield><subfield code="x">0748-8017</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:32</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:3</subfield><subfield code="g">pages:1213-1225</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/qre.1828</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/qre.1828/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1774428921</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.38</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">32</subfield><subfield code="j">2016</subfield><subfield code="e">3</subfield><subfield code="h">1213-1225</subfield></datafield></record></collection>
|
score |
7.400943 |