A Topologically Valid Definition of Depth for Functional Data
The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge...
Ausführliche Beschreibung
Autor*in: |
Alicia Nieto-Reyes [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © Copyright 2016 Institute of Mathematical Statistics |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Statistical science - Hayward, Calif. : Inst., 1986, 31(2016), 1, Seite 61-79 |
---|---|
Übergeordnetes Werk: |
volume:31 ; year:2016 ; number:1 ; pages:61-79 |
Links: |
---|
DOI / URN: |
10.1214/15-STS532 |
---|
Katalog-ID: |
OLC1974043320 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1974043320 | ||
003 | DE-627 | ||
005 | 20220215230642.0 | ||
007 | tu | ||
008 | 160430s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1214/15-STS532 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1974043320 | ||
035 | |a (DE-599)GBVOLC1974043320 | ||
035 | |a (PRQ)p1449-99e1b450f59f8d2fc1cf8f414532424bc9bee076c7878ba4b35212f53e4a548a0 | ||
035 | |a (KEY)0151760020160000031000100061topologicallyvaliddefinitionofdepthforfunctionalda | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
084 | |a 31.73 |2 bkl | ||
100 | 0 | |a Alicia Nieto-Reyes |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Topologically Valid Definition of Depth for Functional Data |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function. | ||
540 | |a Nutzungsrecht: © Copyright 2016 Institute of Mathematical Statistics | ||
650 | 4 | |a Topological manifolds | |
650 | 4 | |a Data analysis | |
650 | 4 | |a Statistical methods | |
650 | 4 | |a Multivariate analysis | |
650 | 4 | |a multivariate statistics | |
650 | 4 | |a Functional data | |
650 | 4 | |a robustness | |
650 | 4 | |a partial observability | |
650 | 4 | |a statistical depth | |
700 | 0 | |a Heather Battey |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Statistical science |d Hayward, Calif. : Inst., 1986 |g 31(2016), 1, Seite 61-79 |w (DE-627)129199435 |w (DE-600)54152-7 |w (DE-576)014457032 |x 0883-4237 |7 nnns |
773 | 1 | 8 | |g volume:31 |g year:2016 |g number:1 |g pages:61-79 |
856 | 4 | 1 | |u http://dx.doi.org/10.1214/15-STS532 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1771234411 |
856 | 4 | 2 | |u http://projecteuclid.org/euclid.ss/1455115914 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2012 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4266 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4311 | ||
912 | |a GBV_ILN_4314 | ||
912 | |a GBV_ILN_4315 | ||
912 | |a GBV_ILN_4318 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.73 |q AVZ |
951 | |a AR | ||
952 | |d 31 |j 2016 |e 1 |h 61-79 |
author_variant |
a n r anr |
---|---|
matchkey_str |
article:08834237:2016----::tplgclyaidfntoodpho |
hierarchy_sort_str |
2016 |
bklnumber |
31.73 |
publishDate |
2016 |
allfields |
10.1214/15-STS532 doi PQ20160430 (DE-627)OLC1974043320 (DE-599)GBVOLC1974043320 (PRQ)p1449-99e1b450f59f8d2fc1cf8f414532424bc9bee076c7878ba4b35212f53e4a548a0 (KEY)0151760020160000031000100061topologicallyvaliddefinitionofdepthforfunctionalda DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Alicia Nieto-Reyes verfasserin aut A Topologically Valid Definition of Depth for Functional Data 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function. Nutzungsrecht: © Copyright 2016 Institute of Mathematical Statistics Topological manifolds Data analysis Statistical methods Multivariate analysis multivariate statistics Functional data robustness partial observability statistical depth Heather Battey oth Enthalten in Statistical science Hayward, Calif. : Inst., 1986 31(2016), 1, Seite 61-79 (DE-627)129199435 (DE-600)54152-7 (DE-576)014457032 0883-4237 nnns volume:31 year:2016 number:1 pages:61-79 http://dx.doi.org/10.1214/15-STS532 Volltext http://search.proquest.com/docview/1771234411 http://projecteuclid.org/euclid.ss/1455115914 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_31 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4700 31.73 AVZ AR 31 2016 1 61-79 |
spelling |
10.1214/15-STS532 doi PQ20160430 (DE-627)OLC1974043320 (DE-599)GBVOLC1974043320 (PRQ)p1449-99e1b450f59f8d2fc1cf8f414532424bc9bee076c7878ba4b35212f53e4a548a0 (KEY)0151760020160000031000100061topologicallyvaliddefinitionofdepthforfunctionalda DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Alicia Nieto-Reyes verfasserin aut A Topologically Valid Definition of Depth for Functional Data 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function. Nutzungsrecht: © Copyright 2016 Institute of Mathematical Statistics Topological manifolds Data analysis Statistical methods Multivariate analysis multivariate statistics Functional data robustness partial observability statistical depth Heather Battey oth Enthalten in Statistical science Hayward, Calif. : Inst., 1986 31(2016), 1, Seite 61-79 (DE-627)129199435 (DE-600)54152-7 (DE-576)014457032 0883-4237 nnns volume:31 year:2016 number:1 pages:61-79 http://dx.doi.org/10.1214/15-STS532 Volltext http://search.proquest.com/docview/1771234411 http://projecteuclid.org/euclid.ss/1455115914 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_31 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4700 31.73 AVZ AR 31 2016 1 61-79 |
allfields_unstemmed |
10.1214/15-STS532 doi PQ20160430 (DE-627)OLC1974043320 (DE-599)GBVOLC1974043320 (PRQ)p1449-99e1b450f59f8d2fc1cf8f414532424bc9bee076c7878ba4b35212f53e4a548a0 (KEY)0151760020160000031000100061topologicallyvaliddefinitionofdepthforfunctionalda DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Alicia Nieto-Reyes verfasserin aut A Topologically Valid Definition of Depth for Functional Data 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function. Nutzungsrecht: © Copyright 2016 Institute of Mathematical Statistics Topological manifolds Data analysis Statistical methods Multivariate analysis multivariate statistics Functional data robustness partial observability statistical depth Heather Battey oth Enthalten in Statistical science Hayward, Calif. : Inst., 1986 31(2016), 1, Seite 61-79 (DE-627)129199435 (DE-600)54152-7 (DE-576)014457032 0883-4237 nnns volume:31 year:2016 number:1 pages:61-79 http://dx.doi.org/10.1214/15-STS532 Volltext http://search.proquest.com/docview/1771234411 http://projecteuclid.org/euclid.ss/1455115914 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_31 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4700 31.73 AVZ AR 31 2016 1 61-79 |
allfieldsGer |
10.1214/15-STS532 doi PQ20160430 (DE-627)OLC1974043320 (DE-599)GBVOLC1974043320 (PRQ)p1449-99e1b450f59f8d2fc1cf8f414532424bc9bee076c7878ba4b35212f53e4a548a0 (KEY)0151760020160000031000100061topologicallyvaliddefinitionofdepthforfunctionalda DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Alicia Nieto-Reyes verfasserin aut A Topologically Valid Definition of Depth for Functional Data 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function. Nutzungsrecht: © Copyright 2016 Institute of Mathematical Statistics Topological manifolds Data analysis Statistical methods Multivariate analysis multivariate statistics Functional data robustness partial observability statistical depth Heather Battey oth Enthalten in Statistical science Hayward, Calif. : Inst., 1986 31(2016), 1, Seite 61-79 (DE-627)129199435 (DE-600)54152-7 (DE-576)014457032 0883-4237 nnns volume:31 year:2016 number:1 pages:61-79 http://dx.doi.org/10.1214/15-STS532 Volltext http://search.proquest.com/docview/1771234411 http://projecteuclid.org/euclid.ss/1455115914 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_31 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4700 31.73 AVZ AR 31 2016 1 61-79 |
allfieldsSound |
10.1214/15-STS532 doi PQ20160430 (DE-627)OLC1974043320 (DE-599)GBVOLC1974043320 (PRQ)p1449-99e1b450f59f8d2fc1cf8f414532424bc9bee076c7878ba4b35212f53e4a548a0 (KEY)0151760020160000031000100061topologicallyvaliddefinitionofdepthforfunctionalda DE-627 ger DE-627 rakwb eng 510 DNB 31.73 bkl Alicia Nieto-Reyes verfasserin aut A Topologically Valid Definition of Depth for Functional Data 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function. Nutzungsrecht: © Copyright 2016 Institute of Mathematical Statistics Topological manifolds Data analysis Statistical methods Multivariate analysis multivariate statistics Functional data robustness partial observability statistical depth Heather Battey oth Enthalten in Statistical science Hayward, Calif. : Inst., 1986 31(2016), 1, Seite 61-79 (DE-627)129199435 (DE-600)54152-7 (DE-576)014457032 0883-4237 nnns volume:31 year:2016 number:1 pages:61-79 http://dx.doi.org/10.1214/15-STS532 Volltext http://search.proquest.com/docview/1771234411 http://projecteuclid.org/euclid.ss/1455115914 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_31 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4700 31.73 AVZ AR 31 2016 1 61-79 |
language |
English |
source |
Enthalten in Statistical science 31(2016), 1, Seite 61-79 volume:31 year:2016 number:1 pages:61-79 |
sourceStr |
Enthalten in Statistical science 31(2016), 1, Seite 61-79 volume:31 year:2016 number:1 pages:61-79 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Topological manifolds Data analysis Statistical methods Multivariate analysis multivariate statistics Functional data robustness partial observability statistical depth |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Statistical science |
authorswithroles_txt_mv |
Alicia Nieto-Reyes @@aut@@ Heather Battey @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129199435 |
dewey-sort |
3510 |
id |
OLC1974043320 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974043320</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215230642.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1214/15-STS532</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974043320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974043320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1449-99e1b450f59f8d2fc1cf8f414532424bc9bee076c7878ba4b35212f53e4a548a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0151760020160000031000100061topologicallyvaliddefinitionofdepthforfunctionalda</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alicia Nieto-Reyes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Topologically Valid Definition of Depth for Functional Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Copyright 2016 Institute of Mathematical Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariate statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robustness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partial observability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">statistical depth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heather Battey</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistical science</subfield><subfield code="d">Hayward, Calif. : Inst., 1986</subfield><subfield code="g">31(2016), 1, Seite 61-79</subfield><subfield code="w">(DE-627)129199435</subfield><subfield code="w">(DE-600)54152-7</subfield><subfield code="w">(DE-576)014457032</subfield><subfield code="x">0883-4237</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:61-79</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1214/15-STS532</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1771234411</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://projecteuclid.org/euclid.ss/1455115914</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">61-79</subfield></datafield></record></collection>
|
author |
Alicia Nieto-Reyes |
spellingShingle |
Alicia Nieto-Reyes ddc 510 bkl 31.73 misc Topological manifolds misc Data analysis misc Statistical methods misc Multivariate analysis misc multivariate statistics misc Functional data misc robustness misc partial observability misc statistical depth A Topologically Valid Definition of Depth for Functional Data |
authorStr |
Alicia Nieto-Reyes |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129199435 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0883-4237 |
topic_title |
510 DNB 31.73 bkl A Topologically Valid Definition of Depth for Functional Data Topological manifolds Data analysis Statistical methods Multivariate analysis multivariate statistics Functional data robustness partial observability statistical depth |
topic |
ddc 510 bkl 31.73 misc Topological manifolds misc Data analysis misc Statistical methods misc Multivariate analysis misc multivariate statistics misc Functional data misc robustness misc partial observability misc statistical depth |
topic_unstemmed |
ddc 510 bkl 31.73 misc Topological manifolds misc Data analysis misc Statistical methods misc Multivariate analysis misc multivariate statistics misc Functional data misc robustness misc partial observability misc statistical depth |
topic_browse |
ddc 510 bkl 31.73 misc Topological manifolds misc Data analysis misc Statistical methods misc Multivariate analysis misc multivariate statistics misc Functional data misc robustness misc partial observability misc statistical depth |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
h b hb |
hierarchy_parent_title |
Statistical science |
hierarchy_parent_id |
129199435 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Statistical science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129199435 (DE-600)54152-7 (DE-576)014457032 |
title |
A Topologically Valid Definition of Depth for Functional Data |
ctrlnum |
(DE-627)OLC1974043320 (DE-599)GBVOLC1974043320 (PRQ)p1449-99e1b450f59f8d2fc1cf8f414532424bc9bee076c7878ba4b35212f53e4a548a0 (KEY)0151760020160000031000100061topologicallyvaliddefinitionofdepthforfunctionalda |
title_full |
A Topologically Valid Definition of Depth for Functional Data |
author_sort |
Alicia Nieto-Reyes |
journal |
Statistical science |
journalStr |
Statistical science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
61 |
author_browse |
Alicia Nieto-Reyes |
container_volume |
31 |
class |
510 DNB 31.73 bkl |
format_se |
Aufsätze |
author-letter |
Alicia Nieto-Reyes |
doi_str_mv |
10.1214/15-STS532 |
dewey-full |
510 |
title_sort |
topologically valid definition of depth for functional data |
title_auth |
A Topologically Valid Definition of Depth for Functional Data |
abstract |
The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function. |
abstractGer |
The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function. |
abstract_unstemmed |
The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_24 GBV_ILN_31 GBV_ILN_70 GBV_ILN_130 GBV_ILN_2004 GBV_ILN_2012 GBV_ILN_2061 GBV_ILN_2088 GBV_ILN_4027 GBV_ILN_4036 GBV_ILN_4125 GBV_ILN_4266 GBV_ILN_4310 GBV_ILN_4311 GBV_ILN_4314 GBV_ILN_4315 GBV_ILN_4318 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A Topologically Valid Definition of Depth for Functional Data |
url |
http://dx.doi.org/10.1214/15-STS532 http://search.proquest.com/docview/1771234411 http://projecteuclid.org/euclid.ss/1455115914 |
remote_bool |
false |
author2 |
Heather Battey |
author2Str |
Heather Battey |
ppnlink |
129199435 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1214/15-STS532 |
up_date |
2024-07-04T03:40:11.400Z |
_version_ |
1803618260256555008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974043320</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220215230642.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1214/15-STS532</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974043320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974043320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1449-99e1b450f59f8d2fc1cf8f414532424bc9bee076c7878ba4b35212f53e4a548a0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0151760020160000031000100061topologicallyvaliddefinitionofdepthforfunctionalda</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Alicia Nieto-Reyes</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Topologically Valid Definition of Depth for Functional Data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main focus of this work is on providing a formal definition of statistical depth for functional data on the basis of six properties, recognising topological features such as continuity, smoothness and contiguity. Amongst our depth defining properties is one that addresses the delicate challenge of inherent partial observability of functional data, with fulfillment giving rise to a minimal guarantee on the performance of the empirical depth beyond the idealised and practically infeasible case of full observability. As an incidental product, functional depths satisfying our definition achieve a robustness that is commonly ascribed to depth, despite the absence of a formal guarantee in the multivariate definition of depth. We demonstrate the fulfillment or otherwise of our properties for six widely used functional depth proposals, thereby providing a systematic basis for selection of a depth function.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Copyright 2016 Institute of Mathematical Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">multivariate statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">robustness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">partial observability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">statistical depth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Heather Battey</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Statistical science</subfield><subfield code="d">Hayward, Calif. : Inst., 1986</subfield><subfield code="g">31(2016), 1, Seite 61-79</subfield><subfield code="w">(DE-627)129199435</subfield><subfield code="w">(DE-600)54152-7</subfield><subfield code="w">(DE-576)014457032</subfield><subfield code="x">0883-4237</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:31</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">pages:61-79</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1214/15-STS532</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1771234411</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://projecteuclid.org/euclid.ss/1455115914</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4311</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4314</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">31</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="h">61-79</subfield></datafield></record></collection>
|
score |
7.401971 |