Online Ensemble Learning of Data Streams with Gradually Evolved Classes
Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes em...
Ausführliche Beschreibung
Autor*in: |
Sun, Y [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website. |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on knowledge and data engineering - New York, NY : IEEE, 1989, (2016) |
---|---|
Übergeordnetes Werk: |
year:2016 |
Links: |
---|
DOI / URN: |
10.1109/TKDE.2016.2526675 |
---|
Katalog-ID: |
OLC1974106888 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1974106888 | ||
003 | DE-627 | ||
005 | 20230714185547.0 | ||
007 | tu | ||
008 | 160430s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TKDE.2016.2526675 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1974106888 | ||
035 | |a (DE-599)GBVOLC1974106888 | ||
035 | |a (PRQ)le_dspace_oai_lra_le_ac_uk_2381_367210 | ||
035 | |a (KEY)0175400920160000000000000000onlineensemblelearningofdatastreamswithgraduallyev | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 530 |a 000 |q DNB |
084 | |a SA 5571 |q AVZ |2 rvk | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Sun, Y |e verfasserin |4 aut | |
245 | 1 | 0 | |a Online Ensemble Learning of Data Streams with Gradually Evolved Classes |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print | ||
540 | |a Nutzungsrecht: Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website. | ||
650 | 4 | |a Data mininG | |
650 | 4 | |a Adaptation models | |
650 | 4 | |a data stream mining | |
650 | 4 | |a Transient analysis | |
650 | 4 | |a Probability distribution | |
650 | 4 | |a Sun | |
650 | 4 | |a class evolution | |
650 | 4 | |a imbalanced classification | |
650 | 4 | |a Computer science | |
650 | 4 | |a ensemble model | |
650 | 4 | |a Data models | |
650 | 4 | |a on-line learning | |
700 | 1 | |a Tang, K |4 oth | |
700 | 1 | |a Minku, Leandro Lei |4 oth | |
700 | 1 | |a Wang, S |4 oth | |
700 | 1 | |a Yao, X |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on knowledge and data engineering |d New York, NY : IEEE, 1989 |g (2016) |w (DE-627)130765732 |w (DE-600)1001468-8 |w (DE-576)023036060 |x 1041-4347 |7 nnns |
773 | 1 | 8 | |g year:2016 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TKDE.2016.2526675 |3 Volltext |
856 | 4 | 2 | |u http://hdl.handle.net/2381/36721 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-BBI | ||
936 | r | v | |a SA 5571 |
936 | b | k | |a 54.00 |q AVZ |
951 | |a AR | ||
952 | |j 2016 |
author_variant |
y s ys |
---|---|
matchkey_str |
article:10414347:2016----::nienebeerigfaatemwtgau |
hierarchy_sort_str |
2016 |
bklnumber |
54.00 |
publishDate |
2016 |
allfields |
10.1109/TKDE.2016.2526675 doi PQ20160430 (DE-627)OLC1974106888 (DE-599)GBVOLC1974106888 (PRQ)le_dspace_oai_lra_le_ac_uk_2381_367210 (KEY)0175400920160000000000000000onlineensemblelearningofdatastreamswithgraduallyev DE-627 ger DE-627 rakwb eng 620 530 000 DNB SA 5571 AVZ rvk 54.00 bkl Sun, Y verfasserin aut Online Ensemble Learning of Data Streams with Gradually Evolved Classes 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print Nutzungsrecht: Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website. Data mininG Adaptation models data stream mining Transient analysis Probability distribution Sun class evolution imbalanced classification Computer science ensemble model Data models on-line learning Tang, K oth Minku, Leandro Lei oth Wang, S oth Yao, X oth Enthalten in IEEE transactions on knowledge and data engineering New York, NY : IEEE, 1989 (2016) (DE-627)130765732 (DE-600)1001468-8 (DE-576)023036060 1041-4347 nnns year:2016 http://dx.doi.org/10.1109/TKDE.2016.2526675 Volltext http://hdl.handle.net/2381/36721 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-BBI SA 5571 54.00 AVZ AR 2016 |
spelling |
10.1109/TKDE.2016.2526675 doi PQ20160430 (DE-627)OLC1974106888 (DE-599)GBVOLC1974106888 (PRQ)le_dspace_oai_lra_le_ac_uk_2381_367210 (KEY)0175400920160000000000000000onlineensemblelearningofdatastreamswithgraduallyev DE-627 ger DE-627 rakwb eng 620 530 000 DNB SA 5571 AVZ rvk 54.00 bkl Sun, Y verfasserin aut Online Ensemble Learning of Data Streams with Gradually Evolved Classes 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print Nutzungsrecht: Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website. Data mininG Adaptation models data stream mining Transient analysis Probability distribution Sun class evolution imbalanced classification Computer science ensemble model Data models on-line learning Tang, K oth Minku, Leandro Lei oth Wang, S oth Yao, X oth Enthalten in IEEE transactions on knowledge and data engineering New York, NY : IEEE, 1989 (2016) (DE-627)130765732 (DE-600)1001468-8 (DE-576)023036060 1041-4347 nnns year:2016 http://dx.doi.org/10.1109/TKDE.2016.2526675 Volltext http://hdl.handle.net/2381/36721 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-BBI SA 5571 54.00 AVZ AR 2016 |
allfields_unstemmed |
10.1109/TKDE.2016.2526675 doi PQ20160430 (DE-627)OLC1974106888 (DE-599)GBVOLC1974106888 (PRQ)le_dspace_oai_lra_le_ac_uk_2381_367210 (KEY)0175400920160000000000000000onlineensemblelearningofdatastreamswithgraduallyev DE-627 ger DE-627 rakwb eng 620 530 000 DNB SA 5571 AVZ rvk 54.00 bkl Sun, Y verfasserin aut Online Ensemble Learning of Data Streams with Gradually Evolved Classes 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print Nutzungsrecht: Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website. Data mininG Adaptation models data stream mining Transient analysis Probability distribution Sun class evolution imbalanced classification Computer science ensemble model Data models on-line learning Tang, K oth Minku, Leandro Lei oth Wang, S oth Yao, X oth Enthalten in IEEE transactions on knowledge and data engineering New York, NY : IEEE, 1989 (2016) (DE-627)130765732 (DE-600)1001468-8 (DE-576)023036060 1041-4347 nnns year:2016 http://dx.doi.org/10.1109/TKDE.2016.2526675 Volltext http://hdl.handle.net/2381/36721 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-BBI SA 5571 54.00 AVZ AR 2016 |
allfieldsGer |
10.1109/TKDE.2016.2526675 doi PQ20160430 (DE-627)OLC1974106888 (DE-599)GBVOLC1974106888 (PRQ)le_dspace_oai_lra_le_ac_uk_2381_367210 (KEY)0175400920160000000000000000onlineensemblelearningofdatastreamswithgraduallyev DE-627 ger DE-627 rakwb eng 620 530 000 DNB SA 5571 AVZ rvk 54.00 bkl Sun, Y verfasserin aut Online Ensemble Learning of Data Streams with Gradually Evolved Classes 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print Nutzungsrecht: Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website. Data mininG Adaptation models data stream mining Transient analysis Probability distribution Sun class evolution imbalanced classification Computer science ensemble model Data models on-line learning Tang, K oth Minku, Leandro Lei oth Wang, S oth Yao, X oth Enthalten in IEEE transactions on knowledge and data engineering New York, NY : IEEE, 1989 (2016) (DE-627)130765732 (DE-600)1001468-8 (DE-576)023036060 1041-4347 nnns year:2016 http://dx.doi.org/10.1109/TKDE.2016.2526675 Volltext http://hdl.handle.net/2381/36721 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-BBI SA 5571 54.00 AVZ AR 2016 |
allfieldsSound |
10.1109/TKDE.2016.2526675 doi PQ20160430 (DE-627)OLC1974106888 (DE-599)GBVOLC1974106888 (PRQ)le_dspace_oai_lra_le_ac_uk_2381_367210 (KEY)0175400920160000000000000000onlineensemblelearningofdatastreamswithgraduallyev DE-627 ger DE-627 rakwb eng 620 530 000 DNB SA 5571 AVZ rvk 54.00 bkl Sun, Y verfasserin aut Online Ensemble Learning of Data Streams with Gradually Evolved Classes 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print Nutzungsrecht: Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website. Data mininG Adaptation models data stream mining Transient analysis Probability distribution Sun class evolution imbalanced classification Computer science ensemble model Data models on-line learning Tang, K oth Minku, Leandro Lei oth Wang, S oth Yao, X oth Enthalten in IEEE transactions on knowledge and data engineering New York, NY : IEEE, 1989 (2016) (DE-627)130765732 (DE-600)1001468-8 (DE-576)023036060 1041-4347 nnns year:2016 http://dx.doi.org/10.1109/TKDE.2016.2526675 Volltext http://hdl.handle.net/2381/36721 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-BBI SA 5571 54.00 AVZ AR 2016 |
language |
English |
source |
Enthalten in IEEE transactions on knowledge and data engineering (2016) year:2016 |
sourceStr |
Enthalten in IEEE transactions on knowledge and data engineering (2016) year:2016 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Data mininG Adaptation models data stream mining Transient analysis Probability distribution Sun class evolution imbalanced classification Computer science ensemble model Data models on-line learning |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on knowledge and data engineering |
authorswithroles_txt_mv |
Sun, Y @@aut@@ Tang, K @@oth@@ Minku, Leandro Lei @@oth@@ Wang, S @@oth@@ Yao, X @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130765732 |
dewey-sort |
3620 |
id |
OLC1974106888 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974106888</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714185547.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TKDE.2016.2526675</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974106888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974106888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)le_dspace_oai_lra_le_ac_uk_2381_367210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0175400920160000000000000000onlineensemblelearningofdatastreamswithgraduallyev</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="a">000</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5571</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Y</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Online Ensemble Learning of Data Streams with Gradually Evolved Classes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mininG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptation models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data stream mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sun</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">class evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">imbalanced classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ensemble model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">on-line learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, K</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minku, Leandro Lei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on knowledge and data engineering</subfield><subfield code="d">New York, NY : IEEE, 1989</subfield><subfield code="g">(2016)</subfield><subfield code="w">(DE-627)130765732</subfield><subfield code="w">(DE-600)1001468-8</subfield><subfield code="w">(DE-576)023036060</subfield><subfield code="x">1041-4347</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2016</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TKDE.2016.2526675</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://hdl.handle.net/2381/36721</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5571</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2016</subfield></datafield></record></collection>
|
author |
Sun, Y |
spellingShingle |
Sun, Y ddc 620 rvk SA 5571 bkl 54.00 misc Data mininG misc Adaptation models misc data stream mining misc Transient analysis misc Probability distribution misc Sun misc class evolution misc imbalanced classification misc Computer science misc ensemble model misc Data models misc on-line learning Online Ensemble Learning of Data Streams with Gradually Evolved Classes |
authorStr |
Sun, Y |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130765732 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations 530 - Physics 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1041-4347 |
topic_title |
620 530 000 DNB SA 5571 AVZ rvk 54.00 bkl Online Ensemble Learning of Data Streams with Gradually Evolved Classes Data mininG Adaptation models data stream mining Transient analysis Probability distribution Sun class evolution imbalanced classification Computer science ensemble model Data models on-line learning |
topic |
ddc 620 rvk SA 5571 bkl 54.00 misc Data mininG misc Adaptation models misc data stream mining misc Transient analysis misc Probability distribution misc Sun misc class evolution misc imbalanced classification misc Computer science misc ensemble model misc Data models misc on-line learning |
topic_unstemmed |
ddc 620 rvk SA 5571 bkl 54.00 misc Data mininG misc Adaptation models misc data stream mining misc Transient analysis misc Probability distribution misc Sun misc class evolution misc imbalanced classification misc Computer science misc ensemble model misc Data models misc on-line learning |
topic_browse |
ddc 620 rvk SA 5571 bkl 54.00 misc Data mininG misc Adaptation models misc data stream mining misc Transient analysis misc Probability distribution misc Sun misc class evolution misc imbalanced classification misc Computer science misc ensemble model misc Data models misc on-line learning |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
k t kt l l m ll llm s w sw x y xy |
hierarchy_parent_title |
IEEE transactions on knowledge and data engineering |
hierarchy_parent_id |
130765732 |
dewey-tens |
620 - Engineering 530 - Physics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
IEEE transactions on knowledge and data engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130765732 (DE-600)1001468-8 (DE-576)023036060 |
title |
Online Ensemble Learning of Data Streams with Gradually Evolved Classes |
ctrlnum |
(DE-627)OLC1974106888 (DE-599)GBVOLC1974106888 (PRQ)le_dspace_oai_lra_le_ac_uk_2381_367210 (KEY)0175400920160000000000000000onlineensemblelearningofdatastreamswithgraduallyev |
title_full |
Online Ensemble Learning of Data Streams with Gradually Evolved Classes |
author_sort |
Sun, Y |
journal |
IEEE transactions on knowledge and data engineering |
journalStr |
IEEE transactions on knowledge and data engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Sun, Y |
class |
620 530 000 DNB SA 5571 AVZ rvk 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Sun, Y |
doi_str_mv |
10.1109/TKDE.2016.2526675 |
dewey-full |
620 530 000 |
title_sort |
online ensemble learning of data streams with gradually evolved classes |
title_auth |
Online Ensemble Learning of Data Streams with Gradually Evolved Classes |
abstract |
Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print |
abstractGer |
Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print |
abstract_unstemmed |
Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-MAT SSG-OPC-BBI |
title_short |
Online Ensemble Learning of Data Streams with Gradually Evolved Classes |
url |
http://dx.doi.org/10.1109/TKDE.2016.2526675 http://hdl.handle.net/2381/36721 |
remote_bool |
false |
author2 |
Tang, K Minku, Leandro Lei Wang, S Yao, X |
author2Str |
Tang, K Minku, Leandro Lei Wang, S Yao, X |
ppnlink |
130765732 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1109/TKDE.2016.2526675 |
up_date |
2024-07-04T03:46:46.685Z |
_version_ |
1803618674743967745 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974106888</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714185547.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TKDE.2016.2526675</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974106888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974106888</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)le_dspace_oai_lra_le_ac_uk_2381_367210</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0175400920160000000000000000onlineensemblelearningofdatastreamswithgraduallyev</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="a">000</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5571</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Y</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Online Ensemble Learning of Data Streams with Gradually Evolved Classes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes emerge or disappear gradually. A class-based ensemble approach, namely Class-Based ensemble for Class Evolution (CBCE), is proposed. By maintaining a base learner for each class and dynamically updating the base learners with new data, CBCE can rapidly adjust to class evolution. A novel under-sampling method for the base learners is also proposed to handle the dynamic class-imbalance problem caused by the gradual evolution of classes. Empirical studies demonstrate the effectiveness of CBCE in various class evolution scenarios in comparison to existing class evolution adaptation methods. Peer-reviewed Post-print</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mininG</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adaptation models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">data stream mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transient analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sun</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">class evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">imbalanced classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ensemble model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">on-line learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, K</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minku, Leandro Lei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, S</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on knowledge and data engineering</subfield><subfield code="d">New York, NY : IEEE, 1989</subfield><subfield code="g">(2016)</subfield><subfield code="w">(DE-627)130765732</subfield><subfield code="w">(DE-600)1001468-8</subfield><subfield code="w">(DE-576)023036060</subfield><subfield code="x">1041-4347</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">year:2016</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TKDE.2016.2526675</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://hdl.handle.net/2381/36721</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5571</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="j">2016</subfield></datafield></record></collection>
|
score |
7.402916 |