Online Ensemble Learning of Data Streams with Gradually Evolved Classes

Class evolution, the phenomenon of class emergence and disappearance, is an important research topic for data stream mining. All previous studies implicitly regard class evolution as a transient change, which is not true for many real-world problems. This paper concerns the scenario where classes em...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Sun, Y [verfasserIn]

Tang, K

Minku, Leandro Lei

Wang, S

Yao, X

Format:

Artikel

Sprache:

Englisch

Erschienen:

2016

Rechteinformationen:

Nutzungsrecht: Copyright © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Deposited with reference to the publisher’s archiving policy available on the SHERPA/RoMEO website.

Schlagwörter:

Data mininG

Adaptation models

data stream mining

Transient analysis

Probability distribution

Sun

class evolution

imbalanced classification

Computer science

ensemble model

Data models

on-line learning

Systematik:

Übergeordnetes Werk:

Enthalten in: IEEE transactions on knowledge and data engineering - New York, NY : IEEE, 1989, (2016)

Übergeordnetes Werk:

year:2016

Links:

Volltext
Link aufrufen

DOI / URN:

10.1109/TKDE.2016.2526675

Katalog-ID:

OLC1974106888

Nicht das Richtige dabei?

Schreiben Sie uns!