Actively Shielded High-Field Air-Core Superconducting Machines
This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key cha...
Ausführliche Beschreibung
Autor*in: |
Haran, Kiruba S [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on applied superconductivity - New York, NY : Inst., 1991, 26(2016), 2, Seite 98-105 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2016 ; number:2 ; pages:98-105 |
Links: |
---|
DOI / URN: |
10.1109/TASC.2016.2519409 |
---|
Katalog-ID: |
OLC1974156613 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1974156613 | ||
003 | DE-627 | ||
005 | 20230714185641.0 | ||
007 | tu | ||
008 | 160430s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TASC.2016.2519409 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1974156613 | ||
035 | |a (DE-599)GBVOLC1974156613 | ||
035 | |a (PRQ)c718-1b1ccacb3e91010d01064eb235e6a0d1e8b4bbda7bf20cdd193047eb299559b20 | ||
035 | |a (KEY)0203240620160000026000200098activelyshieldedhighfieldaircoresuperconductingmac | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DNB |
100 | 1 | |a Haran, Kiruba S |e verfasserin |4 aut | |
245 | 1 | 0 | |a Actively Shielded High-Field Air-Core Superconducting Machines |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors. | ||
650 | 4 | |a generators | |
650 | 4 | |a electrical machines | |
650 | 4 | |a Magnetic flux | |
650 | 4 | |a Superconducting coils | |
650 | 4 | |a Magnetic resonance imaging | |
650 | 4 | |a Torque | |
650 | 4 | |a Assembly | |
650 | 4 | |a Superconducting magnets | |
700 | 1 | |a Loder, David |4 oth | |
700 | 1 | |a Deppen, Timothy O |4 oth | |
700 | 1 | |a Zheng, Lijun |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on applied superconductivity |d New York, NY : Inst., 1991 |g 26(2016), 2, Seite 98-105 |w (DE-627)130969559 |w (DE-600)1070182-5 |w (DE-576)025189840 |x 1051-8223 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2016 |g number:2 |g pages:98-105 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TASC.2016.2519409 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7386585 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 26 |j 2016 |e 2 |h 98-105 |
author_variant |
k s h ks ksh |
---|---|
matchkey_str |
article:10518223:2016----::cieyheddihilaroeuec |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TASC.2016.2519409 doi PQ20160430 (DE-627)OLC1974156613 (DE-599)GBVOLC1974156613 (PRQ)c718-1b1ccacb3e91010d01064eb235e6a0d1e8b4bbda7bf20cdd193047eb299559b20 (KEY)0203240620160000026000200098activelyshieldedhighfieldaircoresuperconductingmac DE-627 ger DE-627 rakwb eng 530 620 DNB Haran, Kiruba S verfasserin aut Actively Shielded High-Field Air-Core Superconducting Machines 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors. generators electrical machines Magnetic flux Superconducting coils Magnetic resonance imaging Torque Assembly Superconducting magnets Loder, David oth Deppen, Timothy O oth Zheng, Lijun oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 26(2016), 2, Seite 98-105 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:26 year:2016 number:2 pages:98-105 http://dx.doi.org/10.1109/TASC.2016.2519409 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7386585 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 26 2016 2 98-105 |
spelling |
10.1109/TASC.2016.2519409 doi PQ20160430 (DE-627)OLC1974156613 (DE-599)GBVOLC1974156613 (PRQ)c718-1b1ccacb3e91010d01064eb235e6a0d1e8b4bbda7bf20cdd193047eb299559b20 (KEY)0203240620160000026000200098activelyshieldedhighfieldaircoresuperconductingmac DE-627 ger DE-627 rakwb eng 530 620 DNB Haran, Kiruba S verfasserin aut Actively Shielded High-Field Air-Core Superconducting Machines 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors. generators electrical machines Magnetic flux Superconducting coils Magnetic resonance imaging Torque Assembly Superconducting magnets Loder, David oth Deppen, Timothy O oth Zheng, Lijun oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 26(2016), 2, Seite 98-105 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:26 year:2016 number:2 pages:98-105 http://dx.doi.org/10.1109/TASC.2016.2519409 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7386585 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 26 2016 2 98-105 |
allfields_unstemmed |
10.1109/TASC.2016.2519409 doi PQ20160430 (DE-627)OLC1974156613 (DE-599)GBVOLC1974156613 (PRQ)c718-1b1ccacb3e91010d01064eb235e6a0d1e8b4bbda7bf20cdd193047eb299559b20 (KEY)0203240620160000026000200098activelyshieldedhighfieldaircoresuperconductingmac DE-627 ger DE-627 rakwb eng 530 620 DNB Haran, Kiruba S verfasserin aut Actively Shielded High-Field Air-Core Superconducting Machines 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors. generators electrical machines Magnetic flux Superconducting coils Magnetic resonance imaging Torque Assembly Superconducting magnets Loder, David oth Deppen, Timothy O oth Zheng, Lijun oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 26(2016), 2, Seite 98-105 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:26 year:2016 number:2 pages:98-105 http://dx.doi.org/10.1109/TASC.2016.2519409 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7386585 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 26 2016 2 98-105 |
allfieldsGer |
10.1109/TASC.2016.2519409 doi PQ20160430 (DE-627)OLC1974156613 (DE-599)GBVOLC1974156613 (PRQ)c718-1b1ccacb3e91010d01064eb235e6a0d1e8b4bbda7bf20cdd193047eb299559b20 (KEY)0203240620160000026000200098activelyshieldedhighfieldaircoresuperconductingmac DE-627 ger DE-627 rakwb eng 530 620 DNB Haran, Kiruba S verfasserin aut Actively Shielded High-Field Air-Core Superconducting Machines 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors. generators electrical machines Magnetic flux Superconducting coils Magnetic resonance imaging Torque Assembly Superconducting magnets Loder, David oth Deppen, Timothy O oth Zheng, Lijun oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 26(2016), 2, Seite 98-105 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:26 year:2016 number:2 pages:98-105 http://dx.doi.org/10.1109/TASC.2016.2519409 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7386585 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 26 2016 2 98-105 |
allfieldsSound |
10.1109/TASC.2016.2519409 doi PQ20160430 (DE-627)OLC1974156613 (DE-599)GBVOLC1974156613 (PRQ)c718-1b1ccacb3e91010d01064eb235e6a0d1e8b4bbda7bf20cdd193047eb299559b20 (KEY)0203240620160000026000200098activelyshieldedhighfieldaircoresuperconductingmac DE-627 ger DE-627 rakwb eng 530 620 DNB Haran, Kiruba S verfasserin aut Actively Shielded High-Field Air-Core Superconducting Machines 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors. generators electrical machines Magnetic flux Superconducting coils Magnetic resonance imaging Torque Assembly Superconducting magnets Loder, David oth Deppen, Timothy O oth Zheng, Lijun oth Enthalten in IEEE transactions on applied superconductivity New York, NY : Inst., 1991 26(2016), 2, Seite 98-105 (DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 1051-8223 nnns volume:26 year:2016 number:2 pages:98-105 http://dx.doi.org/10.1109/TASC.2016.2519409 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7386585 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 AR 26 2016 2 98-105 |
language |
English |
source |
Enthalten in IEEE transactions on applied superconductivity 26(2016), 2, Seite 98-105 volume:26 year:2016 number:2 pages:98-105 |
sourceStr |
Enthalten in IEEE transactions on applied superconductivity 26(2016), 2, Seite 98-105 volume:26 year:2016 number:2 pages:98-105 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
generators electrical machines Magnetic flux Superconducting coils Magnetic resonance imaging Torque Assembly Superconducting magnets |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on applied superconductivity |
authorswithroles_txt_mv |
Haran, Kiruba S @@aut@@ Loder, David @@oth@@ Deppen, Timothy O @@oth@@ Zheng, Lijun @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
130969559 |
dewey-sort |
3530 |
id |
OLC1974156613 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974156613</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714185641.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TASC.2016.2519409</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974156613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974156613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c718-1b1ccacb3e91010d01064eb235e6a0d1e8b4bbda7bf20cdd193047eb299559b20</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0203240620160000026000200098activelyshieldedhighfieldaircoresuperconductingmac</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haran, Kiruba S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Actively Shielded High-Field Air-Core Superconducting Machines</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrical machines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting coils</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic resonance imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torque</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Assembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting magnets</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Loder, David</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deppen, Timothy O</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Lijun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on applied superconductivity</subfield><subfield code="d">New York, NY : Inst., 1991</subfield><subfield code="g">26(2016), 2, Seite 98-105</subfield><subfield code="w">(DE-627)130969559</subfield><subfield code="w">(DE-600)1070182-5</subfield><subfield code="w">(DE-576)025189840</subfield><subfield code="x">1051-8223</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:98-105</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TASC.2016.2519409</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7386585</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">98-105</subfield></datafield></record></collection>
|
author |
Haran, Kiruba S |
spellingShingle |
Haran, Kiruba S ddc 530 misc generators misc electrical machines misc Magnetic flux misc Superconducting coils misc Magnetic resonance imaging misc Torque misc Assembly misc Superconducting magnets Actively Shielded High-Field Air-Core Superconducting Machines |
authorStr |
Haran, Kiruba S |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130969559 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1051-8223 |
topic_title |
530 620 DNB Actively Shielded High-Field Air-Core Superconducting Machines generators electrical machines Magnetic flux Superconducting coils Magnetic resonance imaging Torque Assembly Superconducting magnets |
topic |
ddc 530 misc generators misc electrical machines misc Magnetic flux misc Superconducting coils misc Magnetic resonance imaging misc Torque misc Assembly misc Superconducting magnets |
topic_unstemmed |
ddc 530 misc generators misc electrical machines misc Magnetic flux misc Superconducting coils misc Magnetic resonance imaging misc Torque misc Assembly misc Superconducting magnets |
topic_browse |
ddc 530 misc generators misc electrical machines misc Magnetic flux misc Superconducting coils misc Magnetic resonance imaging misc Torque misc Assembly misc Superconducting magnets |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
d l dl t o d to tod l z lz |
hierarchy_parent_title |
IEEE transactions on applied superconductivity |
hierarchy_parent_id |
130969559 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
IEEE transactions on applied superconductivity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130969559 (DE-600)1070182-5 (DE-576)025189840 |
title |
Actively Shielded High-Field Air-Core Superconducting Machines |
ctrlnum |
(DE-627)OLC1974156613 (DE-599)GBVOLC1974156613 (PRQ)c718-1b1ccacb3e91010d01064eb235e6a0d1e8b4bbda7bf20cdd193047eb299559b20 (KEY)0203240620160000026000200098activelyshieldedhighfieldaircoresuperconductingmac |
title_full |
Actively Shielded High-Field Air-Core Superconducting Machines |
author_sort |
Haran, Kiruba S |
journal |
IEEE transactions on applied superconductivity |
journalStr |
IEEE transactions on applied superconductivity |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
98 |
author_browse |
Haran, Kiruba S |
container_volume |
26 |
class |
530 620 DNB |
format_se |
Aufsätze |
author-letter |
Haran, Kiruba S |
doi_str_mv |
10.1109/TASC.2016.2519409 |
dewey-full |
530 620 |
title_sort |
actively shielded high-field air-core superconducting machines |
title_auth |
Actively Shielded High-Field Air-Core Superconducting Machines |
abstract |
This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors. |
abstractGer |
This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors. |
abstract_unstemmed |
This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 |
container_issue |
2 |
title_short |
Actively Shielded High-Field Air-Core Superconducting Machines |
url |
http://dx.doi.org/10.1109/TASC.2016.2519409 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7386585 |
remote_bool |
false |
author2 |
Loder, David Deppen, Timothy O Zheng, Lijun |
author2Str |
Loder, David Deppen, Timothy O Zheng, Lijun |
ppnlink |
130969559 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1109/TASC.2016.2519409 |
up_date |
2024-07-04T03:52:50.385Z |
_version_ |
1803619056118398976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974156613</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714185641.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TASC.2016.2519409</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974156613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974156613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)c718-1b1ccacb3e91010d01064eb235e6a0d1e8b4bbda7bf20cdd193047eb299559b20</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0203240620160000026000200098activelyshieldedhighfieldaircoresuperconductingmac</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haran, Kiruba S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Actively Shielded High-Field Air-Core Superconducting Machines</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes an approach for obtaining very high power density in an electrical machine by significantly increasing the air-gap magnetic flux density and eliminating the ferromagnetic steel traditionally employed to carry and shield magnetic flux. A novel concept is used to address a key challenge with this topology, that of containing the magnetic fields within the machine. An arrangement of main coils and a set of compensating coils, inspired by actively shielded magnetic resonance imaging magnet designs, are employed to cancel out the field outside the machine without the use of iron while maintaining air-gap field levels that are three to five times greater than conventional machines. For an example 10-MW motor study, the outer diameter is reduced by 35%, with corresponding weight reduction, using only 17% more superconductors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electrical machines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic flux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting coils</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic resonance imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Torque</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Assembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconducting magnets</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Loder, David</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deppen, Timothy O</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Lijun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on applied superconductivity</subfield><subfield code="d">New York, NY : Inst., 1991</subfield><subfield code="g">26(2016), 2, Seite 98-105</subfield><subfield code="w">(DE-627)130969559</subfield><subfield code="w">(DE-600)1070182-5</subfield><subfield code="w">(DE-576)025189840</subfield><subfield code="x">1051-8223</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:98-105</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TASC.2016.2519409</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7386585</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">98-105</subfield></datafield></record></collection>
|
score |
7.4024982 |