Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation
We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of th...
Ausführliche Beschreibung
Autor*in: |
Ozcelik, Damla [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE journal of selected topics in quantum electronics - New York, NY : IEEE, 1995, 22(2016), 4, Seite 1-6 |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2016 ; number:4 ; pages:1-6 |
Links: |
---|
DOI / URN: |
10.1109/JSTQE.2015.2503321 |
---|
Katalog-ID: |
OLC1974225941 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1974225941 | ||
003 | DE-627 | ||
005 | 20230714185804.0 | ||
007 | tu | ||
008 | 160430s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/JSTQE.2015.2503321 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1974225941 | ||
035 | |a (DE-599)GBVOLC1974225941 | ||
035 | |a (PRQ)ieee_primary_0b00006484aeb0750 | ||
035 | |a (KEY)0272399920160000022000400001signaltonoiseenhancementinopticaldetectionofsingle | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DNB |
100 | 1 | |a Ozcelik, Damla |e verfasserin |4 aut | |
245 | 1 | 0 | |a Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated. | ||
650 | 4 | |a Biomedical optical imaging | |
650 | 4 | |a Anti-resonant reflecting optical waveguides (ARROWs) | |
650 | 4 | |a Fluorescence | |
650 | 4 | |a Liquid waveguides | |
650 | 4 | |a Y-splitters | |
650 | 4 | |a biophotonics | |
650 | 4 | |a integrated waveguides | |
650 | 4 | |a Optical signal processing | |
650 | 4 | |a Optical waveguides | |
650 | 4 | |a liquid core waveguides | |
650 | 4 | |a Signal to noise ratio | |
650 | 4 | |a optofluidics | |
650 | 4 | |a Optical device fabrication | |
700 | 1 | |a Stott, Matthew A |4 oth | |
700 | 1 | |a Parks, Joshua W |4 oth | |
700 | 1 | |a Black, Jennifer A |4 oth | |
700 | 1 | |a Wall, Thomas A |4 oth | |
700 | 1 | |a Hawkins, Aaron R |4 oth | |
700 | 1 | |a Schmidt, Holger |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE journal of selected topics in quantum electronics |d New York, NY : IEEE, 1995 |g 22(2016), 4, Seite 1-6 |w (DE-627)184666007 |w (DE-600)1232977-0 |w (DE-576)046708901 |x 1077-260X |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2016 |g number:4 |g pages:1-6 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/JSTQE.2015.2503321 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7336520 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2006 | ||
951 | |a AR | ||
952 | |d 22 |j 2016 |e 4 |h 1-6 |
author_variant |
d o do |
---|---|
matchkey_str |
article:1077260X:2016----::inloosehneetnpiadtcinfigeiuewt |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/JSTQE.2015.2503321 doi PQ20160430 (DE-627)OLC1974225941 (DE-599)GBVOLC1974225941 (PRQ)ieee_primary_0b00006484aeb0750 (KEY)0272399920160000022000400001signaltonoiseenhancementinopticaldetectionofsingle DE-627 ger DE-627 rakwb eng 530 620 DNB Ozcelik, Damla verfasserin aut Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated. Biomedical optical imaging Anti-resonant reflecting optical waveguides (ARROWs) Fluorescence Liquid waveguides Y-splitters biophotonics integrated waveguides Optical signal processing Optical waveguides liquid core waveguides Signal to noise ratio optofluidics Optical device fabrication Stott, Matthew A oth Parks, Joshua W oth Black, Jennifer A oth Wall, Thomas A oth Hawkins, Aaron R oth Schmidt, Holger oth Enthalten in IEEE journal of selected topics in quantum electronics New York, NY : IEEE, 1995 22(2016), 4, Seite 1-6 (DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 1077-260X nnns volume:22 year:2016 number:4 pages:1-6 http://dx.doi.org/10.1109/JSTQE.2015.2503321 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7336520 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 AR 22 2016 4 1-6 |
spelling |
10.1109/JSTQE.2015.2503321 doi PQ20160430 (DE-627)OLC1974225941 (DE-599)GBVOLC1974225941 (PRQ)ieee_primary_0b00006484aeb0750 (KEY)0272399920160000022000400001signaltonoiseenhancementinopticaldetectionofsingle DE-627 ger DE-627 rakwb eng 530 620 DNB Ozcelik, Damla verfasserin aut Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated. Biomedical optical imaging Anti-resonant reflecting optical waveguides (ARROWs) Fluorescence Liquid waveguides Y-splitters biophotonics integrated waveguides Optical signal processing Optical waveguides liquid core waveguides Signal to noise ratio optofluidics Optical device fabrication Stott, Matthew A oth Parks, Joshua W oth Black, Jennifer A oth Wall, Thomas A oth Hawkins, Aaron R oth Schmidt, Holger oth Enthalten in IEEE journal of selected topics in quantum electronics New York, NY : IEEE, 1995 22(2016), 4, Seite 1-6 (DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 1077-260X nnns volume:22 year:2016 number:4 pages:1-6 http://dx.doi.org/10.1109/JSTQE.2015.2503321 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7336520 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 AR 22 2016 4 1-6 |
allfields_unstemmed |
10.1109/JSTQE.2015.2503321 doi PQ20160430 (DE-627)OLC1974225941 (DE-599)GBVOLC1974225941 (PRQ)ieee_primary_0b00006484aeb0750 (KEY)0272399920160000022000400001signaltonoiseenhancementinopticaldetectionofsingle DE-627 ger DE-627 rakwb eng 530 620 DNB Ozcelik, Damla verfasserin aut Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated. Biomedical optical imaging Anti-resonant reflecting optical waveguides (ARROWs) Fluorescence Liquid waveguides Y-splitters biophotonics integrated waveguides Optical signal processing Optical waveguides liquid core waveguides Signal to noise ratio optofluidics Optical device fabrication Stott, Matthew A oth Parks, Joshua W oth Black, Jennifer A oth Wall, Thomas A oth Hawkins, Aaron R oth Schmidt, Holger oth Enthalten in IEEE journal of selected topics in quantum electronics New York, NY : IEEE, 1995 22(2016), 4, Seite 1-6 (DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 1077-260X nnns volume:22 year:2016 number:4 pages:1-6 http://dx.doi.org/10.1109/JSTQE.2015.2503321 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7336520 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 AR 22 2016 4 1-6 |
allfieldsGer |
10.1109/JSTQE.2015.2503321 doi PQ20160430 (DE-627)OLC1974225941 (DE-599)GBVOLC1974225941 (PRQ)ieee_primary_0b00006484aeb0750 (KEY)0272399920160000022000400001signaltonoiseenhancementinopticaldetectionofsingle DE-627 ger DE-627 rakwb eng 530 620 DNB Ozcelik, Damla verfasserin aut Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated. Biomedical optical imaging Anti-resonant reflecting optical waveguides (ARROWs) Fluorescence Liquid waveguides Y-splitters biophotonics integrated waveguides Optical signal processing Optical waveguides liquid core waveguides Signal to noise ratio optofluidics Optical device fabrication Stott, Matthew A oth Parks, Joshua W oth Black, Jennifer A oth Wall, Thomas A oth Hawkins, Aaron R oth Schmidt, Holger oth Enthalten in IEEE journal of selected topics in quantum electronics New York, NY : IEEE, 1995 22(2016), 4, Seite 1-6 (DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 1077-260X nnns volume:22 year:2016 number:4 pages:1-6 http://dx.doi.org/10.1109/JSTQE.2015.2503321 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7336520 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 AR 22 2016 4 1-6 |
allfieldsSound |
10.1109/JSTQE.2015.2503321 doi PQ20160430 (DE-627)OLC1974225941 (DE-599)GBVOLC1974225941 (PRQ)ieee_primary_0b00006484aeb0750 (KEY)0272399920160000022000400001signaltonoiseenhancementinopticaldetectionofsingle DE-627 ger DE-627 rakwb eng 530 620 DNB Ozcelik, Damla verfasserin aut Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated. Biomedical optical imaging Anti-resonant reflecting optical waveguides (ARROWs) Fluorescence Liquid waveguides Y-splitters biophotonics integrated waveguides Optical signal processing Optical waveguides liquid core waveguides Signal to noise ratio optofluidics Optical device fabrication Stott, Matthew A oth Parks, Joshua W oth Black, Jennifer A oth Wall, Thomas A oth Hawkins, Aaron R oth Schmidt, Holger oth Enthalten in IEEE journal of selected topics in quantum electronics New York, NY : IEEE, 1995 22(2016), 4, Seite 1-6 (DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 1077-260X nnns volume:22 year:2016 number:4 pages:1-6 http://dx.doi.org/10.1109/JSTQE.2015.2503321 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7336520 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 AR 22 2016 4 1-6 |
language |
English |
source |
Enthalten in IEEE journal of selected topics in quantum electronics 22(2016), 4, Seite 1-6 volume:22 year:2016 number:4 pages:1-6 |
sourceStr |
Enthalten in IEEE journal of selected topics in quantum electronics 22(2016), 4, Seite 1-6 volume:22 year:2016 number:4 pages:1-6 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biomedical optical imaging Anti-resonant reflecting optical waveguides (ARROWs) Fluorescence Liquid waveguides Y-splitters biophotonics integrated waveguides Optical signal processing Optical waveguides liquid core waveguides Signal to noise ratio optofluidics Optical device fabrication |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
IEEE journal of selected topics in quantum electronics |
authorswithroles_txt_mv |
Ozcelik, Damla @@aut@@ Stott, Matthew A @@oth@@ Parks, Joshua W @@oth@@ Black, Jennifer A @@oth@@ Wall, Thomas A @@oth@@ Hawkins, Aaron R @@oth@@ Schmidt, Holger @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
184666007 |
dewey-sort |
3530 |
id |
OLC1974225941 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974225941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714185804.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JSTQE.2015.2503321</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974225941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974225941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)ieee_primary_0b00006484aeb0750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0272399920160000022000400001signaltonoiseenhancementinopticaldetectionofsingle</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ozcelik, Damla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-resonant reflecting optical waveguides (ARROWs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Y-splitters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biophotonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrated waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid core waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal to noise ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optofluidics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical device fabrication</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stott, Matthew A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parks, Joshua W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Black, Jennifer A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wall, Thomas A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hawkins, Aaron R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmidt, Holger</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE journal of selected topics in quantum electronics</subfield><subfield code="d">New York, NY : IEEE, 1995</subfield><subfield code="g">22(2016), 4, Seite 1-6</subfield><subfield code="w">(DE-627)184666007</subfield><subfield code="w">(DE-600)1232977-0</subfield><subfield code="w">(DE-576)046708901</subfield><subfield code="x">1077-260X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1-6</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JSTQE.2015.2503321</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7336520</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">1-6</subfield></datafield></record></collection>
|
author |
Ozcelik, Damla |
spellingShingle |
Ozcelik, Damla ddc 530 misc Biomedical optical imaging misc Anti-resonant reflecting optical waveguides (ARROWs) misc Fluorescence misc Liquid waveguides misc Y-splitters misc biophotonics misc integrated waveguides misc Optical signal processing misc Optical waveguides misc liquid core waveguides misc Signal to noise ratio misc optofluidics misc Optical device fabrication Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation |
authorStr |
Ozcelik, Damla |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)184666007 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1077-260X |
topic_title |
530 620 DNB Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation Biomedical optical imaging Anti-resonant reflecting optical waveguides (ARROWs) Fluorescence Liquid waveguides Y-splitters biophotonics integrated waveguides Optical signal processing Optical waveguides liquid core waveguides Signal to noise ratio optofluidics Optical device fabrication |
topic |
ddc 530 misc Biomedical optical imaging misc Anti-resonant reflecting optical waveguides (ARROWs) misc Fluorescence misc Liquid waveguides misc Y-splitters misc biophotonics misc integrated waveguides misc Optical signal processing misc Optical waveguides misc liquid core waveguides misc Signal to noise ratio misc optofluidics misc Optical device fabrication |
topic_unstemmed |
ddc 530 misc Biomedical optical imaging misc Anti-resonant reflecting optical waveguides (ARROWs) misc Fluorescence misc Liquid waveguides misc Y-splitters misc biophotonics misc integrated waveguides misc Optical signal processing misc Optical waveguides misc liquid core waveguides misc Signal to noise ratio misc optofluidics misc Optical device fabrication |
topic_browse |
ddc 530 misc Biomedical optical imaging misc Anti-resonant reflecting optical waveguides (ARROWs) misc Fluorescence misc Liquid waveguides misc Y-splitters misc biophotonics misc integrated waveguides misc Optical signal processing misc Optical waveguides misc liquid core waveguides misc Signal to noise ratio misc optofluidics misc Optical device fabrication |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
m a s ma mas j w p jw jwp j a b ja jab t a w ta taw a r h ar arh h s hs |
hierarchy_parent_title |
IEEE journal of selected topics in quantum electronics |
hierarchy_parent_id |
184666007 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
IEEE journal of selected topics in quantum electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)184666007 (DE-600)1232977-0 (DE-576)046708901 |
title |
Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation |
ctrlnum |
(DE-627)OLC1974225941 (DE-599)GBVOLC1974225941 (PRQ)ieee_primary_0b00006484aeb0750 (KEY)0272399920160000022000400001signaltonoiseenhancementinopticaldetectionofsingle |
title_full |
Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation |
author_sort |
Ozcelik, Damla |
journal |
IEEE journal of selected topics in quantum electronics |
journalStr |
IEEE journal of selected topics in quantum electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Ozcelik, Damla |
container_volume |
22 |
class |
530 620 DNB |
format_se |
Aufsätze |
author-letter |
Ozcelik, Damla |
doi_str_mv |
10.1109/JSTQE.2015.2503321 |
dewey-full |
530 620 |
title_sort |
signal-to-noise enhancement in optical detection of single viruses with multispot excitation |
title_auth |
Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation |
abstract |
We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated. |
abstractGer |
We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated. |
abstract_unstemmed |
We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_2006 |
container_issue |
4 |
title_short |
Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation |
url |
http://dx.doi.org/10.1109/JSTQE.2015.2503321 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7336520 |
remote_bool |
false |
author2 |
Stott, Matthew A Parks, Joshua W Black, Jennifer A Wall, Thomas A Hawkins, Aaron R Schmidt, Holger |
author2Str |
Stott, Matthew A Parks, Joshua W Black, Jennifer A Wall, Thomas A Hawkins, Aaron R Schmidt, Holger |
ppnlink |
184666007 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1109/JSTQE.2015.2503321 |
up_date |
2024-07-04T04:01:59.213Z |
_version_ |
1803619631590539264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974225941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714185804.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/JSTQE.2015.2503321</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974225941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974225941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)ieee_primary_0b00006484aeb0750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0272399920160000022000400001signaltonoiseenhancementinopticaldetectionofsingle</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ozcelik, Damla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Signal-to-Noise Enhancement in Optical Detection of Single Viruses With Multispot Excitation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We present fluorescence detection of single H1N1 viruses with enhanced signal to noise ratio ( SNR ) achieved by multispot excitation in liquid-core antiresonant reflecting optical waveguides (ARROWs). Solid-core Y-splitting ARROW waveguides are fabricated orthogonal to the liquid-core section of the chip, creating multiple excitation spots for the analyte. We derive expressions for the SNR increase after signal processing, and analyze its dependence on signal levels and spot number. Very good agreement between theoretical calculations and experimental results is found. SNR enhancements up to 5×10 4 are demonstrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomedical optical imaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anti-resonant reflecting optical waveguides (ARROWs)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluorescence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Y-splitters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biophotonics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">integrated waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid core waveguides</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal to noise ratio</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">optofluidics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical device fabrication</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stott, Matthew A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parks, Joshua W</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Black, Jennifer A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wall, Thomas A</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hawkins, Aaron R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmidt, Holger</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE journal of selected topics in quantum electronics</subfield><subfield code="d">New York, NY : IEEE, 1995</subfield><subfield code="g">22(2016), 4, Seite 1-6</subfield><subfield code="w">(DE-627)184666007</subfield><subfield code="w">(DE-600)1232977-0</subfield><subfield code="w">(DE-576)046708901</subfield><subfield code="x">1077-260X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:4</subfield><subfield code="g">pages:1-6</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/JSTQE.2015.2503321</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7336520</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2016</subfield><subfield code="e">4</subfield><subfield code="h">1-6</subfield></datafield></record></collection>
|
score |
7.401267 |