Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis
The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a...
Ausführliche Beschreibung
Autor*in: |
Kenta Hotokezaka [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Nature physics - Basingstoke : Nature Publishing Group, 2005, 11(2015), 12, Seite 1042 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2015 ; number:12 ; pages:1042 |
Links: |
---|
DOI / URN: |
10.1038/nphys3574 |
---|
Katalog-ID: |
OLC1974314626 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1974314626 | ||
003 | DE-627 | ||
005 | 20220219182733.0 | ||
007 | tu | ||
008 | 160430s2015 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1038/nphys3574 |2 doi | |
028 | 5 | 2 | |a PQ20160430 |
035 | |a (DE-627)OLC1974314626 | ||
035 | |a (DE-599)GBVOLC1974314626 | ||
035 | |a (PRQ)p575-a7c47303ef560636a4aea0e9b1ed3c656fc1b8230af62b8d859d276df66ecbee0 | ||
035 | |a (KEY)0590766720150000011001201042shortlived244pupointstocompactbinarymergersassites | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DNB |
084 | |a 33.00 |2 bkl | ||
100 | 0 | |a Kenta Hotokezaka |e verfasserin |4 aut | |
245 | 1 | 0 | |a Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates. | ||
650 | 4 | |a Neutron stars | |
650 | 4 | |a Double stars | |
650 | 4 | |a Astrophysics | |
650 | 4 | |a Radioactive materials | |
700 | 0 | |a Tsvi Piran |4 oth | |
700 | 0 | |a Michael Paul |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Nature physics |d Basingstoke : Nature Publishing Group, 2005 |g 11(2015), 12, Seite 1042 |w (DE-627)503328537 |w (DE-600)2210466-5 |w (DE-576)251841693 |x 1745-2473 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2015 |g number:12 |g pages:1042 |
856 | 4 | 1 | |u http://dx.doi.org/10.1038/nphys3574 |3 Volltext |
856 | 4 | 2 | |u http://search.proquest.com/docview/1766115185 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2185 | ||
936 | b | k | |a 33.00 |q AVZ |
951 | |a AR | ||
952 | |d 11 |j 2015 |e 12 |h 1042 |
author_variant |
k h kh |
---|---|
matchkey_str |
article:17452473:2015----::hrlvd4ppittcmatiayegrastsohayp |
hierarchy_sort_str |
2015 |
bklnumber |
33.00 |
publishDate |
2015 |
allfields |
10.1038/nphys3574 doi PQ20160430 (DE-627)OLC1974314626 (DE-599)GBVOLC1974314626 (PRQ)p575-a7c47303ef560636a4aea0e9b1ed3c656fc1b8230af62b8d859d276df66ecbee0 (KEY)0590766720150000011001201042shortlived244pupointstocompactbinarymergersassites DE-627 ger DE-627 rakwb eng 530 DNB 33.00 bkl Kenta Hotokezaka verfasserin aut Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates. Neutron stars Double stars Astrophysics Radioactive materials Tsvi Piran oth Michael Paul oth Enthalten in Nature physics Basingstoke : Nature Publishing Group, 2005 11(2015), 12, Seite 1042 (DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 1745-2473 nnns volume:11 year:2015 number:12 pages:1042 http://dx.doi.org/10.1038/nphys3574 Volltext http://search.proquest.com/docview/1766115185 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 33.00 AVZ AR 11 2015 12 1042 |
spelling |
10.1038/nphys3574 doi PQ20160430 (DE-627)OLC1974314626 (DE-599)GBVOLC1974314626 (PRQ)p575-a7c47303ef560636a4aea0e9b1ed3c656fc1b8230af62b8d859d276df66ecbee0 (KEY)0590766720150000011001201042shortlived244pupointstocompactbinarymergersassites DE-627 ger DE-627 rakwb eng 530 DNB 33.00 bkl Kenta Hotokezaka verfasserin aut Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates. Neutron stars Double stars Astrophysics Radioactive materials Tsvi Piran oth Michael Paul oth Enthalten in Nature physics Basingstoke : Nature Publishing Group, 2005 11(2015), 12, Seite 1042 (DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 1745-2473 nnns volume:11 year:2015 number:12 pages:1042 http://dx.doi.org/10.1038/nphys3574 Volltext http://search.proquest.com/docview/1766115185 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 33.00 AVZ AR 11 2015 12 1042 |
allfields_unstemmed |
10.1038/nphys3574 doi PQ20160430 (DE-627)OLC1974314626 (DE-599)GBVOLC1974314626 (PRQ)p575-a7c47303ef560636a4aea0e9b1ed3c656fc1b8230af62b8d859d276df66ecbee0 (KEY)0590766720150000011001201042shortlived244pupointstocompactbinarymergersassites DE-627 ger DE-627 rakwb eng 530 DNB 33.00 bkl Kenta Hotokezaka verfasserin aut Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates. Neutron stars Double stars Astrophysics Radioactive materials Tsvi Piran oth Michael Paul oth Enthalten in Nature physics Basingstoke : Nature Publishing Group, 2005 11(2015), 12, Seite 1042 (DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 1745-2473 nnns volume:11 year:2015 number:12 pages:1042 http://dx.doi.org/10.1038/nphys3574 Volltext http://search.proquest.com/docview/1766115185 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 33.00 AVZ AR 11 2015 12 1042 |
allfieldsGer |
10.1038/nphys3574 doi PQ20160430 (DE-627)OLC1974314626 (DE-599)GBVOLC1974314626 (PRQ)p575-a7c47303ef560636a4aea0e9b1ed3c656fc1b8230af62b8d859d276df66ecbee0 (KEY)0590766720150000011001201042shortlived244pupointstocompactbinarymergersassites DE-627 ger DE-627 rakwb eng 530 DNB 33.00 bkl Kenta Hotokezaka verfasserin aut Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates. Neutron stars Double stars Astrophysics Radioactive materials Tsvi Piran oth Michael Paul oth Enthalten in Nature physics Basingstoke : Nature Publishing Group, 2005 11(2015), 12, Seite 1042 (DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 1745-2473 nnns volume:11 year:2015 number:12 pages:1042 http://dx.doi.org/10.1038/nphys3574 Volltext http://search.proquest.com/docview/1766115185 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 33.00 AVZ AR 11 2015 12 1042 |
allfieldsSound |
10.1038/nphys3574 doi PQ20160430 (DE-627)OLC1974314626 (DE-599)GBVOLC1974314626 (PRQ)p575-a7c47303ef560636a4aea0e9b1ed3c656fc1b8230af62b8d859d276df66ecbee0 (KEY)0590766720150000011001201042shortlived244pupointstocompactbinarymergersassites DE-627 ger DE-627 rakwb eng 530 DNB 33.00 bkl Kenta Hotokezaka verfasserin aut Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis 2015 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates. Neutron stars Double stars Astrophysics Radioactive materials Tsvi Piran oth Michael Paul oth Enthalten in Nature physics Basingstoke : Nature Publishing Group, 2005 11(2015), 12, Seite 1042 (DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 1745-2473 nnns volume:11 year:2015 number:12 pages:1042 http://dx.doi.org/10.1038/nphys3574 Volltext http://search.proquest.com/docview/1766115185 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 33.00 AVZ AR 11 2015 12 1042 |
language |
English |
source |
Enthalten in Nature physics 11(2015), 12, Seite 1042 volume:11 year:2015 number:12 pages:1042 |
sourceStr |
Enthalten in Nature physics 11(2015), 12, Seite 1042 volume:11 year:2015 number:12 pages:1042 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Neutron stars Double stars Astrophysics Radioactive materials |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Nature physics |
authorswithroles_txt_mv |
Kenta Hotokezaka @@aut@@ Tsvi Piran @@oth@@ Michael Paul @@oth@@ |
publishDateDaySort_date |
2015-01-01T00:00:00Z |
hierarchy_top_id |
503328537 |
dewey-sort |
3530 |
id |
OLC1974314626 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974314626</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219182733.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nphys3574</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974314626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974314626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p575-a7c47303ef560636a4aea0e9b1ed3c656fc1b8230af62b8d859d276df66ecbee0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0590766720150000011001201042shortlived244pupointstocompactbinarymergersassites</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kenta Hotokezaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutron stars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double stars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radioactive materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tsvi Piran</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael Paul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature physics</subfield><subfield code="d">Basingstoke : Nature Publishing Group, 2005</subfield><subfield code="g">11(2015), 12, Seite 1042</subfield><subfield code="w">(DE-627)503328537</subfield><subfield code="w">(DE-600)2210466-5</subfield><subfield code="w">(DE-576)251841693</subfield><subfield code="x">1745-2473</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:1042</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nphys3574</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1766115185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2015</subfield><subfield code="e">12</subfield><subfield code="h">1042</subfield></datafield></record></collection>
|
author |
Kenta Hotokezaka |
spellingShingle |
Kenta Hotokezaka ddc 530 bkl 33.00 misc Neutron stars misc Double stars misc Astrophysics misc Radioactive materials Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis |
authorStr |
Kenta Hotokezaka |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)503328537 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1745-2473 |
topic_title |
530 DNB 33.00 bkl Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis Neutron stars Double stars Astrophysics Radioactive materials |
topic |
ddc 530 bkl 33.00 misc Neutron stars misc Double stars misc Astrophysics misc Radioactive materials |
topic_unstemmed |
ddc 530 bkl 33.00 misc Neutron stars misc Double stars misc Astrophysics misc Radioactive materials |
topic_browse |
ddc 530 bkl 33.00 misc Neutron stars misc Double stars misc Astrophysics misc Radioactive materials |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
t p tp m p mp |
hierarchy_parent_title |
Nature physics |
hierarchy_parent_id |
503328537 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Nature physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)503328537 (DE-600)2210466-5 (DE-576)251841693 |
title |
Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis |
ctrlnum |
(DE-627)OLC1974314626 (DE-599)GBVOLC1974314626 (PRQ)p575-a7c47303ef560636a4aea0e9b1ed3c656fc1b8230af62b8d859d276df66ecbee0 (KEY)0590766720150000011001201042shortlived244pupointstocompactbinarymergersassites |
title_full |
Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis |
author_sort |
Kenta Hotokezaka |
journal |
Nature physics |
journalStr |
Nature physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1042 |
author_browse |
Kenta Hotokezaka |
container_volume |
11 |
class |
530 DNB 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Kenta Hotokezaka |
doi_str_mv |
10.1038/nphys3574 |
dewey-full |
530 |
title_sort |
short-lived 244pu points to compact binary mergers as sites for heavy r-process nucleosynthesis |
title_auth |
Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis |
abstract |
The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates. |
abstractGer |
The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates. |
abstract_unstemmed |
The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY GBV_ILN_70 GBV_ILN_170 GBV_ILN_2185 |
container_issue |
12 |
title_short |
Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis |
url |
http://dx.doi.org/10.1038/nphys3574 http://search.proquest.com/docview/1766115185 |
remote_bool |
false |
author2 |
Tsvi Piran Michael Paul |
author2Str |
Tsvi Piran Michael Paul |
ppnlink |
503328537 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1038/nphys3574 |
up_date |
2024-07-04T04:14:04.158Z |
_version_ |
1803620391750467584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974314626</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220219182733.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160430s2015 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1038/nphys3574</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974314626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974314626</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p575-a7c47303ef560636a4aea0e9b1ed3c656fc1b8230af62b8d859d276df66ecbee0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0590766720150000011001201042shortlived244pupointstocompactbinarymergersassites</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="0" ind2=" "><subfield code="a">Kenta Hotokezaka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Short-lived 244Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The origin of heavy elements produced through rapid neutron capture ('r-process') by seed nuclei is one of the current nucleosynthesis mysteries. Core collapse supernovae (cc-SNe) and compact binary mergers are considered as possible sites. The first produces small amounts of material at a high event rate whereas the latter produces large amounts in rare events. Radioactive elements with the right lifetime can break the degeneracy between high-rate/low-yield and low-rate/high-yield scenarios. Among radioactive elements, most interesting is 244Pu (half-life of 81 million years), for which both the current accumulation of live 244Pu particles accreted via interstellar particles in the Earth's deep-sea floor and the Early Solar System (ESS) abundances have been measured. Interestingly, the estimated 244Pu abundance in the current interstellar medium inferred from deep-sea measurements is significantly lower than that corresponding to the ESS measurements. Here we show that both the current and ESS abundances of 244Pu are naturally explained within the low-rate/high-yield scenario. The inferred event rate remarkably agrees with compact binary merger rates estimated from Galactic neutron star binaries and from short gamma-ray bursts. Furthermore, the ejected mass of r-process elements per event agrees with both theoretica and observational macronova/kilonova estimates.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutron stars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Double stars</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radioactive materials</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Tsvi Piran</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="0" ind2=" "><subfield code="a">Michael Paul</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nature physics</subfield><subfield code="d">Basingstoke : Nature Publishing Group, 2005</subfield><subfield code="g">11(2015), 12, Seite 1042</subfield><subfield code="w">(DE-627)503328537</subfield><subfield code="w">(DE-600)2210466-5</subfield><subfield code="w">(DE-576)251841693</subfield><subfield code="x">1745-2473</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:12</subfield><subfield code="g">pages:1042</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1038/nphys3574</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1766115185</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2185</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2015</subfield><subfield code="e">12</subfield><subfield code="h">1042</subfield></datafield></record></collection>
|
score |
7.4019165 |