Impromptu Crisis Mapping to Prioritize Emergency Response

To visualize post-emergency damage, a crisis-mapping system uses readily available semantic annotators, a machine-learning classifier to analyze relevant tweets, and interactive maps to rank extracted situational information. The system was validated against data from two recent disasters in Italy.

Gespeichert in:
Autor*in:

Avvenuti, Marco [verfasserIn]

Cresci, Stefano

Vigna, Fabio Del

Tesconi, Maurizio

Format:

Artikel

Sprache:

Englisch

Erschienen:

2016

Schlagwörter:

Earthquakes

Data mining

computing and social issues

emergency response

Knowledge based systems

Semantics

Emergency services

data analysis

visualization

disaster management

situational awareness

crisis mapping

Geology

Data acquisition

Information

Artificial intelligence

Mapping

Italy

Systematik:

Übergeordnetes Werk:

Enthalten in: Computer - Los Alamitos, Calif. : IEEE Computer Soc. Publ. Off., 1970, 49(2016), 5, Seite 28-37

Übergeordnetes Werk:

volume:49 ; year:2016 ; number:5 ; pages:28-37

Links:

Volltext
Link aufrufen

DOI / URN:

10.1109/MC.2016.134

Katalog-ID:

OLC1974547922

Nicht das Richtige dabei?

Schreiben Sie uns!