Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain
Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the...
Ausführliche Beschreibung
Autor*in: |
Wang, X. G [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: © Author(s) |
---|
Übergeordnetes Werk: |
Enthalten in: Review of scientific instruments - Melville, NY : AIP, 1930, 87(2016), 5 |
---|---|
Übergeordnetes Werk: |
volume:87 ; year:2016 ; number:5 |
Links: |
---|
DOI / URN: |
10.1063/1.4948287 |
---|
Katalog-ID: |
OLC1974641295 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1974641295 | ||
003 | DE-627 | ||
005 | 20230714190335.0 | ||
007 | tu | ||
008 | 160609s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1063/1.4948287 |2 doi | |
028 | 5 | 2 | |a PQ20160610 |
035 | |a (DE-627)OLC1974641295 | ||
035 | |a (DE-599)GBVOLC1974641295 | ||
035 | |a (PRQ)scitation_primary_10_1063_1_49482870 | ||
035 | |a (KEY)0016010520160000087000500000developmentofalownoiseinductionmagneticsensorusing | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DNB |
100 | 1 | |a Wang, X. G |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. | ||
540 | |a Nutzungsrecht: © Author(s) | ||
700 | 1 | |a Shang, X. L |4 oth | |
700 | 1 | |a Lin, J |4 oth | |
773 | 0 | 8 | |i Enthalten in |t Review of scientific instruments |d Melville, NY : AIP, 1930 |g 87(2016), 5 |w (DE-627)129509175 |w (DE-600)209865-9 |w (DE-576)014915782 |x 0034-6748 |7 nnns |
773 | 1 | 8 | |g volume:87 |g year:2016 |g number:5 |
856 | 4 | 1 | |u http://dx.doi.org/10.1063/1.4948287 |3 Volltext |
856 | 4 | 2 | |u http://dx.doi.org/10.1063/1.4948287 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_47 | ||
912 | |a GBV_ILN_59 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_2219 | ||
912 | |a GBV_ILN_2279 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4310 | ||
951 | |a AR | ||
952 | |d 87 |j 2016 |e 5 |
author_variant |
x g w xg xgw |
---|---|
matchkey_str |
article:00346748:2016----::eeomnoaonienutomgeisnouigantclxeai |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1063/1.4948287 doi PQ20160610 (DE-627)OLC1974641295 (DE-599)GBVOLC1974641295 (PRQ)scitation_primary_10_1063_1_49482870 (KEY)0016010520160000087000500000developmentofalownoiseinductionmagneticsensorusing DE-627 ger DE-627 rakwb eng 530 620 DNB Wang, X. G verfasserin aut Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. Nutzungsrecht: © Author(s) Shang, X. L oth Lin, J oth Enthalten in Review of scientific instruments Melville, NY : AIP, 1930 87(2016), 5 (DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 0034-6748 nnns volume:87 year:2016 number:5 http://dx.doi.org/10.1063/1.4948287 Volltext http://dx.doi.org/10.1063/1.4948287 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 AR 87 2016 5 |
spelling |
10.1063/1.4948287 doi PQ20160610 (DE-627)OLC1974641295 (DE-599)GBVOLC1974641295 (PRQ)scitation_primary_10_1063_1_49482870 (KEY)0016010520160000087000500000developmentofalownoiseinductionmagneticsensorusing DE-627 ger DE-627 rakwb eng 530 620 DNB Wang, X. G verfasserin aut Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. Nutzungsrecht: © Author(s) Shang, X. L oth Lin, J oth Enthalten in Review of scientific instruments Melville, NY : AIP, 1930 87(2016), 5 (DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 0034-6748 nnns volume:87 year:2016 number:5 http://dx.doi.org/10.1063/1.4948287 Volltext http://dx.doi.org/10.1063/1.4948287 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 AR 87 2016 5 |
allfields_unstemmed |
10.1063/1.4948287 doi PQ20160610 (DE-627)OLC1974641295 (DE-599)GBVOLC1974641295 (PRQ)scitation_primary_10_1063_1_49482870 (KEY)0016010520160000087000500000developmentofalownoiseinductionmagneticsensorusing DE-627 ger DE-627 rakwb eng 530 620 DNB Wang, X. G verfasserin aut Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. Nutzungsrecht: © Author(s) Shang, X. L oth Lin, J oth Enthalten in Review of scientific instruments Melville, NY : AIP, 1930 87(2016), 5 (DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 0034-6748 nnns volume:87 year:2016 number:5 http://dx.doi.org/10.1063/1.4948287 Volltext http://dx.doi.org/10.1063/1.4948287 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 AR 87 2016 5 |
allfieldsGer |
10.1063/1.4948287 doi PQ20160610 (DE-627)OLC1974641295 (DE-599)GBVOLC1974641295 (PRQ)scitation_primary_10_1063_1_49482870 (KEY)0016010520160000087000500000developmentofalownoiseinductionmagneticsensorusing DE-627 ger DE-627 rakwb eng 530 620 DNB Wang, X. G verfasserin aut Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. Nutzungsrecht: © Author(s) Shang, X. L oth Lin, J oth Enthalten in Review of scientific instruments Melville, NY : AIP, 1930 87(2016), 5 (DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 0034-6748 nnns volume:87 year:2016 number:5 http://dx.doi.org/10.1063/1.4948287 Volltext http://dx.doi.org/10.1063/1.4948287 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 AR 87 2016 5 |
allfieldsSound |
10.1063/1.4948287 doi PQ20160610 (DE-627)OLC1974641295 (DE-599)GBVOLC1974641295 (PRQ)scitation_primary_10_1063_1_49482870 (KEY)0016010520160000087000500000developmentofalownoiseinductionmagneticsensorusing DE-627 ger DE-627 rakwb eng 530 620 DNB Wang, X. G verfasserin aut Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. Nutzungsrecht: © Author(s) Shang, X. L oth Lin, J oth Enthalten in Review of scientific instruments Melville, NY : AIP, 1930 87(2016), 5 (DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 0034-6748 nnns volume:87 year:2016 number:5 http://dx.doi.org/10.1063/1.4948287 Volltext http://dx.doi.org/10.1063/1.4948287 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 AR 87 2016 5 |
language |
English |
source |
Enthalten in Review of scientific instruments 87(2016), 5 volume:87 year:2016 number:5 |
sourceStr |
Enthalten in Review of scientific instruments 87(2016), 5 volume:87 year:2016 number:5 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Review of scientific instruments |
authorswithroles_txt_mv |
Wang, X. G @@aut@@ Shang, X. L @@oth@@ Lin, J @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129509175 |
dewey-sort |
3530 |
id |
OLC1974641295 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974641295</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714190335.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4948287</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974641295</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974641295</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)scitation_primary_10_1063_1_49482870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0016010520160000087000500000developmentofalownoiseinductionmagneticsensorusing</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, X. G</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Author(s)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shang, X. L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Review of scientific instruments</subfield><subfield code="d">Melville, NY : AIP, 1930</subfield><subfield code="g">87(2016), 5</subfield><subfield code="w">(DE-627)129509175</subfield><subfield code="w">(DE-600)209865-9</subfield><subfield code="w">(DE-576)014915782</subfield><subfield code="x">0034-6748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:87</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4948287</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1063/1.4948287</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">87</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield></datafield></record></collection>
|
author |
Wang, X. G |
spellingShingle |
Wang, X. G ddc 530 Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain |
authorStr |
Wang, X. G |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129509175 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0034-6748 |
topic_title |
530 620 DNB Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain |
topic |
ddc 530 |
topic_unstemmed |
ddc 530 |
topic_browse |
ddc 530 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
x l s xl xls j l jl |
hierarchy_parent_title |
Review of scientific instruments |
hierarchy_parent_id |
129509175 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Review of scientific instruments |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129509175 (DE-600)209865-9 (DE-576)014915782 |
title |
Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain |
ctrlnum |
(DE-627)OLC1974641295 (DE-599)GBVOLC1974641295 (PRQ)scitation_primary_10_1063_1_49482870 (KEY)0016010520160000087000500000developmentofalownoiseinductionmagneticsensorusing |
title_full |
Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain |
author_sort |
Wang, X. G |
journal |
Review of scientific instruments |
journalStr |
Review of scientific instruments |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Wang, X. G |
container_volume |
87 |
class |
530 620 DNB |
format_se |
Aufsätze |
author-letter |
Wang, X. G |
doi_str_mv |
10.1063/1.4948287 |
dewey-full |
530 620 |
title_sort |
development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain |
title_auth |
Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain |
abstract |
Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. |
abstractGer |
Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. |
abstract_unstemmed |
Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_21 GBV_ILN_47 GBV_ILN_59 GBV_ILN_70 GBV_ILN_170 GBV_ILN_2219 GBV_ILN_2279 GBV_ILN_4306 GBV_ILN_4310 |
container_issue |
5 |
title_short |
Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain |
url |
http://dx.doi.org/10.1063/1.4948287 |
remote_bool |
false |
author2 |
Shang, X. L Lin, J |
author2Str |
Shang, X. L Lin, J |
ppnlink |
129509175 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1063/1.4948287 |
up_date |
2024-07-04T04:45:58.190Z |
_version_ |
1803622398750097408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974641295</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230714190335.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/1.4948287</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974641295</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974641295</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)scitation_primary_10_1063_1_49482870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0016010520160000087000500000developmentofalownoiseinductionmagneticsensorusing</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, X. G</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: © Author(s)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shang, X. L</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, J</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Review of scientific instruments</subfield><subfield code="d">Melville, NY : AIP, 1930</subfield><subfield code="g">87(2016), 5</subfield><subfield code="w">(DE-627)129509175</subfield><subfield code="w">(DE-600)209865-9</subfield><subfield code="w">(DE-576)014915782</subfield><subfield code="x">0034-6748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:87</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1063/1.4948287</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://dx.doi.org/10.1063/1.4948287</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_59</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2279</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">87</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield></datafield></record></collection>
|
score |
7.402297 |