Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs
We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math>&...
Ausführliche Beschreibung
Autor*in: |
Guruswami, Venkatesan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on information theory - Piscataway, NJ : IEEE, 1963, 62(2016), 5, Seite 2707-2718 |
---|---|
Übergeordnetes Werk: |
volume:62 ; year:2016 ; number:5 ; pages:2707-2718 |
Links: |
---|
DOI / URN: |
10.1109/TIT.2016.2544347 |
---|
Katalog-ID: |
OLC1974709078 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1974709078 | ||
003 | DE-627 | ||
005 | 20220221163300.0 | ||
007 | tu | ||
008 | 160609s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TIT.2016.2544347 |2 doi | |
028 | 5 | 2 | |a PQ20160610 |
035 | |a (DE-627)OLC1974709078 | ||
035 | |a (DE-599)GBVOLC1974709078 | ||
035 | |a (PRQ)i826-3186ec3a0bbaf51cc503d68ade2a8e673313d7b6430973aa41947f99b526aa020 | ||
035 | |a (KEY)0023448620160000062000502707explicitlistdecodablerankmetricandsubspacecodesvia | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 620 |q DNB |
084 | |a SA 5570 |q AVZ |2 rvk | ||
100 | 1 | |a Guruswami, Venkatesan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes. | ||
650 | 4 | |a Space-time codes | |
650 | 4 | |a Measurement | |
650 | 4 | |a Context | |
650 | 4 | |a Network coding | |
650 | 4 | |a Decoding | |
650 | 4 | |a Error analysis | |
650 | 4 | |a algebraic codes | |
650 | 4 | |a Reed-Solomon codes | |
650 | 4 | |a list error-correction | |
650 | 4 | |a pseudorandomness | |
650 | 4 | |a Linear codes | |
650 | 4 | |a Algebra | |
650 | 4 | |a Information theory | |
650 | 4 | |a Polynomials | |
700 | 1 | |a Wang, Carol |4 oth | |
700 | 1 | |a Xing, Chaoping |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on information theory |d Piscataway, NJ : IEEE, 1963 |g 62(2016), 5, Seite 2707-2718 |w (DE-627)12954731X |w (DE-600)218505-2 |w (DE-576)01499819X |x 0018-9448 |7 nnns |
773 | 1 | 8 | |g volume:62 |g year:2016 |g number:5 |g pages:2707-2718 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TIT.2016.2544347 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7437470 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2088 | ||
936 | r | v | |a SA 5570 |
951 | |a AR | ||
952 | |d 62 |j 2016 |e 5 |h 2707-2718 |
author_variant |
v g vg |
---|---|
matchkey_str |
article:00189448:2016----::xlctiteoalrnmtiadusaeoev |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TIT.2016.2544347 doi PQ20160610 (DE-627)OLC1974709078 (DE-599)GBVOLC1974709078 (PRQ)i826-3186ec3a0bbaf51cc503d68ade2a8e673313d7b6430973aa41947f99b526aa020 (KEY)0023448620160000062000502707explicitlistdecodablerankmetricandsubspacecodesvia DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Guruswami, Venkatesan verfasserin aut Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes. Space-time codes Measurement Context Network coding Decoding Error analysis algebraic codes Reed-Solomon codes list error-correction pseudorandomness Linear codes Algebra Information theory Polynomials Wang, Carol oth Xing, Chaoping oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 62(2016), 5, Seite 2707-2718 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:62 year:2016 number:5 pages:2707-2718 http://dx.doi.org/10.1109/TIT.2016.2544347 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7437470 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 62 2016 5 2707-2718 |
spelling |
10.1109/TIT.2016.2544347 doi PQ20160610 (DE-627)OLC1974709078 (DE-599)GBVOLC1974709078 (PRQ)i826-3186ec3a0bbaf51cc503d68ade2a8e673313d7b6430973aa41947f99b526aa020 (KEY)0023448620160000062000502707explicitlistdecodablerankmetricandsubspacecodesvia DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Guruswami, Venkatesan verfasserin aut Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes. Space-time codes Measurement Context Network coding Decoding Error analysis algebraic codes Reed-Solomon codes list error-correction pseudorandomness Linear codes Algebra Information theory Polynomials Wang, Carol oth Xing, Chaoping oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 62(2016), 5, Seite 2707-2718 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:62 year:2016 number:5 pages:2707-2718 http://dx.doi.org/10.1109/TIT.2016.2544347 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7437470 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 62 2016 5 2707-2718 |
allfields_unstemmed |
10.1109/TIT.2016.2544347 doi PQ20160610 (DE-627)OLC1974709078 (DE-599)GBVOLC1974709078 (PRQ)i826-3186ec3a0bbaf51cc503d68ade2a8e673313d7b6430973aa41947f99b526aa020 (KEY)0023448620160000062000502707explicitlistdecodablerankmetricandsubspacecodesvia DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Guruswami, Venkatesan verfasserin aut Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes. Space-time codes Measurement Context Network coding Decoding Error analysis algebraic codes Reed-Solomon codes list error-correction pseudorandomness Linear codes Algebra Information theory Polynomials Wang, Carol oth Xing, Chaoping oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 62(2016), 5, Seite 2707-2718 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:62 year:2016 number:5 pages:2707-2718 http://dx.doi.org/10.1109/TIT.2016.2544347 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7437470 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 62 2016 5 2707-2718 |
allfieldsGer |
10.1109/TIT.2016.2544347 doi PQ20160610 (DE-627)OLC1974709078 (DE-599)GBVOLC1974709078 (PRQ)i826-3186ec3a0bbaf51cc503d68ade2a8e673313d7b6430973aa41947f99b526aa020 (KEY)0023448620160000062000502707explicitlistdecodablerankmetricandsubspacecodesvia DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Guruswami, Venkatesan verfasserin aut Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes. Space-time codes Measurement Context Network coding Decoding Error analysis algebraic codes Reed-Solomon codes list error-correction pseudorandomness Linear codes Algebra Information theory Polynomials Wang, Carol oth Xing, Chaoping oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 62(2016), 5, Seite 2707-2718 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:62 year:2016 number:5 pages:2707-2718 http://dx.doi.org/10.1109/TIT.2016.2544347 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7437470 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 62 2016 5 2707-2718 |
allfieldsSound |
10.1109/TIT.2016.2544347 doi PQ20160610 (DE-627)OLC1974709078 (DE-599)GBVOLC1974709078 (PRQ)i826-3186ec3a0bbaf51cc503d68ade2a8e673313d7b6430973aa41947f99b526aa020 (KEY)0023448620160000062000502707explicitlistdecodablerankmetricandsubspacecodesvia DE-627 ger DE-627 rakwb eng 070 620 DNB SA 5570 AVZ rvk Guruswami, Venkatesan verfasserin aut Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes. Space-time codes Measurement Context Network coding Decoding Error analysis algebraic codes Reed-Solomon codes list error-correction pseudorandomness Linear codes Algebra Information theory Polynomials Wang, Carol oth Xing, Chaoping oth Enthalten in IEEE transactions on information theory Piscataway, NJ : IEEE, 1963 62(2016), 5, Seite 2707-2718 (DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X 0018-9448 nnns volume:62 year:2016 number:5 pages:2707-2718 http://dx.doi.org/10.1109/TIT.2016.2544347 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7437470 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 SA 5570 AR 62 2016 5 2707-2718 |
language |
English |
source |
Enthalten in IEEE transactions on information theory 62(2016), 5, Seite 2707-2718 volume:62 year:2016 number:5 pages:2707-2718 |
sourceStr |
Enthalten in IEEE transactions on information theory 62(2016), 5, Seite 2707-2718 volume:62 year:2016 number:5 pages:2707-2718 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Space-time codes Measurement Context Network coding Decoding Error analysis algebraic codes Reed-Solomon codes list error-correction pseudorandomness Linear codes Algebra Information theory Polynomials |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on information theory |
authorswithroles_txt_mv |
Guruswami, Venkatesan @@aut@@ Wang, Carol @@oth@@ Xing, Chaoping @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
12954731X |
dewey-sort |
270 |
id |
OLC1974709078 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974709078</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221163300.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIT.2016.2544347</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974709078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974709078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i826-3186ec3a0bbaf51cc503d68ade2a8e673313d7b6430973aa41947f99b526aa020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023448620160000062000502707explicitlistdecodablerankmetricandsubspacecodesvia</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5570</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guruswami, Venkatesan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space-time codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Context</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algebraic codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reed-Solomon codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">list error-correction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pseudorandomness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Carol</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Chaoping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on information theory</subfield><subfield code="d">Piscataway, NJ : IEEE, 1963</subfield><subfield code="g">62(2016), 5, Seite 2707-2718</subfield><subfield code="w">(DE-627)12954731X</subfield><subfield code="w">(DE-600)218505-2</subfield><subfield code="w">(DE-576)01499819X</subfield><subfield code="x">0018-9448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:2707-2718</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIT.2016.2544347</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7437470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5570</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">2707-2718</subfield></datafield></record></collection>
|
author |
Guruswami, Venkatesan |
spellingShingle |
Guruswami, Venkatesan ddc 070 rvk SA 5570 misc Space-time codes misc Measurement misc Context misc Network coding misc Decoding misc Error analysis misc algebraic codes misc Reed-Solomon codes misc list error-correction misc pseudorandomness misc Linear codes misc Algebra misc Information theory misc Polynomials Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs |
authorStr |
Guruswami, Venkatesan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12954731X |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9448 |
topic_title |
070 620 DNB SA 5570 AVZ rvk Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs Space-time codes Measurement Context Network coding Decoding Error analysis algebraic codes Reed-Solomon codes list error-correction pseudorandomness Linear codes Algebra Information theory Polynomials |
topic |
ddc 070 rvk SA 5570 misc Space-time codes misc Measurement misc Context misc Network coding misc Decoding misc Error analysis misc algebraic codes misc Reed-Solomon codes misc list error-correction misc pseudorandomness misc Linear codes misc Algebra misc Information theory misc Polynomials |
topic_unstemmed |
ddc 070 rvk SA 5570 misc Space-time codes misc Measurement misc Context misc Network coding misc Decoding misc Error analysis misc algebraic codes misc Reed-Solomon codes misc list error-correction misc pseudorandomness misc Linear codes misc Algebra misc Information theory misc Polynomials |
topic_browse |
ddc 070 rvk SA 5570 misc Space-time codes misc Measurement misc Context misc Network coding misc Decoding misc Error analysis misc algebraic codes misc Reed-Solomon codes misc list error-correction misc pseudorandomness misc Linear codes misc Algebra misc Information theory misc Polynomials |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
c w cw c x cx |
hierarchy_parent_title |
IEEE transactions on information theory |
hierarchy_parent_id |
12954731X |
dewey-tens |
070 - News media, journalism & publishing 620 - Engineering |
hierarchy_top_title |
IEEE transactions on information theory |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12954731X (DE-600)218505-2 (DE-576)01499819X |
title |
Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs |
ctrlnum |
(DE-627)OLC1974709078 (DE-599)GBVOLC1974709078 (PRQ)i826-3186ec3a0bbaf51cc503d68ade2a8e673313d7b6430973aa41947f99b526aa020 (KEY)0023448620160000062000502707explicitlistdecodablerankmetricandsubspacecodesvia |
title_full |
Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs |
author_sort |
Guruswami, Venkatesan |
journal |
IEEE transactions on information theory |
journalStr |
IEEE transactions on information theory |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
2707 |
author_browse |
Guruswami, Venkatesan |
container_volume |
62 |
class |
070 620 DNB SA 5570 AVZ rvk |
format_se |
Aufsätze |
author-letter |
Guruswami, Venkatesan |
doi_str_mv |
10.1109/TIT.2016.2544347 |
dewey-full |
070 620 |
title_sort |
explicit list-decodable rank-metric and subspace codes via subspace designs |
title_auth |
Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs |
abstract |
We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes. |
abstractGer |
We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes. |
abstract_unstemmed |
We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OLC-BUB SSG-OPC-BBI GBV_ILN_65 GBV_ILN_70 GBV_ILN_2002 GBV_ILN_2088 |
container_issue |
5 |
title_short |
Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs |
url |
http://dx.doi.org/10.1109/TIT.2016.2544347 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7437470 |
remote_bool |
false |
author2 |
Wang, Carol Xing, Chaoping |
author2Str |
Wang, Carol Xing, Chaoping |
ppnlink |
12954731X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TIT.2016.2544347 |
up_date |
2024-07-04T04:54:54.203Z |
_version_ |
1803622960799416320 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1974709078</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220221163300.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TIT.2016.2544347</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1974709078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1974709078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i826-3186ec3a0bbaf51cc503d68ade2a8e673313d7b6430973aa41947f99b526aa020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0023448620160000062000502707explicitlistdecodablerankmetricandsubspacecodesvia</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 5570</subfield><subfield code="q">AVZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guruswami, Venkatesan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We construct an explicit family of <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-linear rank-metric codes over any field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula> that enables efficient list-decoding up to a fraction <inline-formula> <tex-math notation="LaTeX">\rho </tex-math></inline-formula> of errors in the rank metric with a rate of <inline-formula> <tex-math notation="LaTeX">1-\rho - \varepsilon </tex-math></inline-formula>, for any desired <inline-formula> <tex-math notation="LaTeX">\rho \in (0,1) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX"> \varepsilon > 0 </tex-math></inline-formula>. This is the first explicit construction of positive rate rank-metric codes for efficient list-decoding beyond the unique decoding radius. Our codes are explicit subcodes of the well-known Gabidulin codes, which encode linearized polynomials of low degree via their values at a collection of linearly independent points. The subcode is picked by restricting the message polynomials to an <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h} </tex-math></inline-formula>-subspace that evades the structured subspaces over an extension field <inline-formula> <tex-math notation="LaTeX"> \mathbb {F}_{h^{t}} </tex-math></inline-formula> that arise in our linear-algebraic list decoder for Gabidulin codes. This subspace is obtained by combining subspace designs constructed by Guruswami and Kopparty (FOCS'13) with subspace-evasive varieties due to Dvir and Lovett (STOC'12). We establish a similar result for subspace codes, which have received much attention recently in the context of network coding. We also give explicit subcodes of folded Reed-Solomon (RS) codes with small folding order, which are list-decodable (in the Hamming metric) with optimal redundancy, motivated by the fact that list-decoding RS codes reduces to list-decoding such folded RS codes. However, as we only list-decode a subcode of these codes, the Johnson radius continues to be the best known error fraction for list-decoding RS codes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space-time codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Context</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network coding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decoding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">algebraic codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reed-Solomon codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">list error-correction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pseudorandomness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Carol</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Chaoping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on information theory</subfield><subfield code="d">Piscataway, NJ : IEEE, 1963</subfield><subfield code="g">62(2016), 5, Seite 2707-2718</subfield><subfield code="w">(DE-627)12954731X</subfield><subfield code="w">(DE-600)218505-2</subfield><subfield code="w">(DE-576)01499819X</subfield><subfield code="x">0018-9448</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:62</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:2707-2718</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TIT.2016.2544347</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7437470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">SA 5570</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">62</subfield><subfield code="j">2016</subfield><subfield code="e">5</subfield><subfield code="h">2707-2718</subfield></datafield></record></collection>
|
score |
7.4017506 |