Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection
The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, min...
Ausführliche Beschreibung
Autor*in: |
Batyaev, V. F [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IEEE transactions on nuclear science - New York, NY : IEEE, 1963, 63(2016), 2, Seite 524-527 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2016 ; number:2 ; pages:524-527 |
Links: |
---|
DOI / URN: |
10.1109/TNS.2016.2521409 |
---|
Katalog-ID: |
OLC1975027795 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1975027795 | ||
003 | DE-627 | ||
005 | 20230525173932.0 | ||
007 | tu | ||
008 | 160609s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1109/TNS.2016.2521409 |2 doi | |
028 | 5 | 2 | |a PQ20160610 |
035 | |a (DE-627)OLC1975027795 | ||
035 | |a (DE-599)GBVOLC1975027795 | ||
035 | |a (PRQ)i533-4c04155a90face2459c12456528eaad7063638c4a175915e997efbdb6ea2ef490 | ||
035 | |a (KEY)0054996720160000063000200524featuresofdifferentinorganicscintillatorsusedinneu | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DNB |
100 | 1 | |a Batyaev, V. F |e verfasserin |4 aut | |
245 | 1 | 0 | |a Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] . | ||
650 | 4 | |a Generators | |
650 | 4 | |a Neutrons | |
650 | 4 | |a Monte Carlo methods | |
650 | 4 | |a Detectors | |
650 | 4 | |a Energy resolution | |
650 | 4 | |a Crystals | |
650 | 4 | |a Inspection | |
700 | 1 | |a Belichenko, S. G |4 oth | |
700 | 1 | |a Bestaev, R. R |4 oth | |
773 | 0 | 8 | |i Enthalten in |t IEEE transactions on nuclear science |d New York, NY : IEEE, 1963 |g 63(2016), 2, Seite 524-527 |w (DE-627)129547352 |w (DE-600)218510-6 |w (DE-576)014998238 |x 0018-9499 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2016 |g number:2 |g pages:524-527 |
856 | 4 | 1 | |u http://dx.doi.org/10.1109/TNS.2016.2521409 |3 Volltext |
856 | 4 | 2 | |u http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7454825 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_70 | ||
951 | |a AR | ||
952 | |d 63 |j 2016 |e 2 |h 524-527 |
author_variant |
v f b vf vfb |
---|---|
matchkey_str |
article:00189499:2016----::etrsfifrniognccniltrueinurnaitosseso |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1109/TNS.2016.2521409 doi PQ20160610 (DE-627)OLC1975027795 (DE-599)GBVOLC1975027795 (PRQ)i533-4c04155a90face2459c12456528eaad7063638c4a175915e997efbdb6ea2ef490 (KEY)0054996720160000063000200524featuresofdifferentinorganicscintillatorsusedinneu DE-627 ger DE-627 rakwb eng 620 DNB Batyaev, V. F verfasserin aut Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] . Generators Neutrons Monte Carlo methods Detectors Energy resolution Crystals Inspection Belichenko, S. G oth Bestaev, R. R oth Enthalten in IEEE transactions on nuclear science New York, NY : IEEE, 1963 63(2016), 2, Seite 524-527 (DE-627)129547352 (DE-600)218510-6 (DE-576)014998238 0018-9499 nnns volume:63 year:2016 number:2 pages:524-527 http://dx.doi.org/10.1109/TNS.2016.2521409 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7454825 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_70 AR 63 2016 2 524-527 |
spelling |
10.1109/TNS.2016.2521409 doi PQ20160610 (DE-627)OLC1975027795 (DE-599)GBVOLC1975027795 (PRQ)i533-4c04155a90face2459c12456528eaad7063638c4a175915e997efbdb6ea2ef490 (KEY)0054996720160000063000200524featuresofdifferentinorganicscintillatorsusedinneu DE-627 ger DE-627 rakwb eng 620 DNB Batyaev, V. F verfasserin aut Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] . Generators Neutrons Monte Carlo methods Detectors Energy resolution Crystals Inspection Belichenko, S. G oth Bestaev, R. R oth Enthalten in IEEE transactions on nuclear science New York, NY : IEEE, 1963 63(2016), 2, Seite 524-527 (DE-627)129547352 (DE-600)218510-6 (DE-576)014998238 0018-9499 nnns volume:63 year:2016 number:2 pages:524-527 http://dx.doi.org/10.1109/TNS.2016.2521409 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7454825 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_70 AR 63 2016 2 524-527 |
allfields_unstemmed |
10.1109/TNS.2016.2521409 doi PQ20160610 (DE-627)OLC1975027795 (DE-599)GBVOLC1975027795 (PRQ)i533-4c04155a90face2459c12456528eaad7063638c4a175915e997efbdb6ea2ef490 (KEY)0054996720160000063000200524featuresofdifferentinorganicscintillatorsusedinneu DE-627 ger DE-627 rakwb eng 620 DNB Batyaev, V. F verfasserin aut Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] . Generators Neutrons Monte Carlo methods Detectors Energy resolution Crystals Inspection Belichenko, S. G oth Bestaev, R. R oth Enthalten in IEEE transactions on nuclear science New York, NY : IEEE, 1963 63(2016), 2, Seite 524-527 (DE-627)129547352 (DE-600)218510-6 (DE-576)014998238 0018-9499 nnns volume:63 year:2016 number:2 pages:524-527 http://dx.doi.org/10.1109/TNS.2016.2521409 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7454825 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_70 AR 63 2016 2 524-527 |
allfieldsGer |
10.1109/TNS.2016.2521409 doi PQ20160610 (DE-627)OLC1975027795 (DE-599)GBVOLC1975027795 (PRQ)i533-4c04155a90face2459c12456528eaad7063638c4a175915e997efbdb6ea2ef490 (KEY)0054996720160000063000200524featuresofdifferentinorganicscintillatorsusedinneu DE-627 ger DE-627 rakwb eng 620 DNB Batyaev, V. F verfasserin aut Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] . Generators Neutrons Monte Carlo methods Detectors Energy resolution Crystals Inspection Belichenko, S. G oth Bestaev, R. R oth Enthalten in IEEE transactions on nuclear science New York, NY : IEEE, 1963 63(2016), 2, Seite 524-527 (DE-627)129547352 (DE-600)218510-6 (DE-576)014998238 0018-9499 nnns volume:63 year:2016 number:2 pages:524-527 http://dx.doi.org/10.1109/TNS.2016.2521409 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7454825 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_70 AR 63 2016 2 524-527 |
allfieldsSound |
10.1109/TNS.2016.2521409 doi PQ20160610 (DE-627)OLC1975027795 (DE-599)GBVOLC1975027795 (PRQ)i533-4c04155a90face2459c12456528eaad7063638c4a175915e997efbdb6ea2ef490 (KEY)0054996720160000063000200524featuresofdifferentinorganicscintillatorsusedinneu DE-627 ger DE-627 rakwb eng 620 DNB Batyaev, V. F verfasserin aut Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] . Generators Neutrons Monte Carlo methods Detectors Energy resolution Crystals Inspection Belichenko, S. G oth Bestaev, R. R oth Enthalten in IEEE transactions on nuclear science New York, NY : IEEE, 1963 63(2016), 2, Seite 524-527 (DE-627)129547352 (DE-600)218510-6 (DE-576)014998238 0018-9499 nnns volume:63 year:2016 number:2 pages:524-527 http://dx.doi.org/10.1109/TNS.2016.2521409 Volltext http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7454825 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_70 AR 63 2016 2 524-527 |
language |
English |
source |
Enthalten in IEEE transactions on nuclear science 63(2016), 2, Seite 524-527 volume:63 year:2016 number:2 pages:524-527 |
sourceStr |
Enthalten in IEEE transactions on nuclear science 63(2016), 2, Seite 524-527 volume:63 year:2016 number:2 pages:524-527 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Generators Neutrons Monte Carlo methods Detectors Energy resolution Crystals Inspection |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
IEEE transactions on nuclear science |
authorswithroles_txt_mv |
Batyaev, V. F @@aut@@ Belichenko, S. G @@oth@@ Bestaev, R. R @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129547352 |
dewey-sort |
3620 |
id |
OLC1975027795 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975027795</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230525173932.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TNS.2016.2521409</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975027795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975027795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i533-4c04155a90face2459c12456528eaad7063638c4a175915e997efbdb6ea2ef490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0054996720160000063000200524featuresofdifferentinorganicscintillatorsusedinneu</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Batyaev, V. F</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutrons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inspection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Belichenko, S. G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bestaev, R. R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on nuclear science</subfield><subfield code="d">New York, NY : IEEE, 1963</subfield><subfield code="g">63(2016), 2, Seite 524-527</subfield><subfield code="w">(DE-627)129547352</subfield><subfield code="w">(DE-600)218510-6</subfield><subfield code="w">(DE-576)014998238</subfield><subfield code="x">0018-9499</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:524-527</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TNS.2016.2521409</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7454825</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">524-527</subfield></datafield></record></collection>
|
author |
Batyaev, V. F |
spellingShingle |
Batyaev, V. F ddc 620 misc Generators misc Neutrons misc Monte Carlo methods misc Detectors misc Energy resolution misc Crystals misc Inspection Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection |
authorStr |
Batyaev, V. F |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129547352 |
format |
Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0018-9499 |
topic_title |
620 DNB Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection Generators Neutrons Monte Carlo methods Detectors Energy resolution Crystals Inspection |
topic |
ddc 620 misc Generators misc Neutrons misc Monte Carlo methods misc Detectors misc Energy resolution misc Crystals misc Inspection |
topic_unstemmed |
ddc 620 misc Generators misc Neutrons misc Monte Carlo methods misc Detectors misc Energy resolution misc Crystals misc Inspection |
topic_browse |
ddc 620 misc Generators misc Neutrons misc Monte Carlo methods misc Detectors misc Energy resolution misc Crystals misc Inspection |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s g b sg sgb r r b rr rrb |
hierarchy_parent_title |
IEEE transactions on nuclear science |
hierarchy_parent_id |
129547352 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
IEEE transactions on nuclear science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129547352 (DE-600)218510-6 (DE-576)014998238 |
title |
Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection |
ctrlnum |
(DE-627)OLC1975027795 (DE-599)GBVOLC1975027795 (PRQ)i533-4c04155a90face2459c12456528eaad7063638c4a175915e997efbdb6ea2ef490 (KEY)0054996720160000063000200524featuresofdifferentinorganicscintillatorsusedinneu |
title_full |
Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection |
author_sort |
Batyaev, V. F |
journal |
IEEE transactions on nuclear science |
journalStr |
IEEE transactions on nuclear science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
524 |
author_browse |
Batyaev, V. F |
container_volume |
63 |
class |
620 DNB |
format_se |
Aufsätze |
author-letter |
Batyaev, V. F |
doi_str_mv |
10.1109/TNS.2016.2521409 |
dewey-full |
620 |
title_sort |
features of different inorganic scintillators used in neutron-radiation systems for illegal substance detection |
title_auth |
Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection |
abstract |
The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] . |
abstractGer |
The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] . |
abstract_unstemmed |
The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] . |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-PHA GBV_ILN_70 |
container_issue |
2 |
title_short |
Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection |
url |
http://dx.doi.org/10.1109/TNS.2016.2521409 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7454825 |
remote_bool |
false |
author2 |
Belichenko, S. G Bestaev, R. R |
author2Str |
Belichenko, S. G Bestaev, R. R |
ppnlink |
129547352 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1109/TNS.2016.2521409 |
up_date |
2024-07-04T05:37:02.658Z |
_version_ |
1803625612087132160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975027795</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230525173932.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1109/TNS.2016.2521409</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975027795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975027795</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)i533-4c04155a90face2459c12456528eaad7063638c4a175915e997efbdb6ea2ef490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0054996720160000063000200524featuresofdifferentinorganicscintillatorsusedinneu</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Batyaev, V. F</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Features of Different Inorganic Scintillators Used in Neutron-Radiation Systems for Illegal Substance Detection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The work is devoted to a quantitative comparison of different inorganic scintillators to be used in neutron-radiation inspection systems. Such systems can be based on the tagged neutron (TN) method and have a significant potential in different applications such as detection of explosives, drugs, mines, identification of chemical warfare agents, assay of nuclear materials and human body composition <xref ref-type="bibr" rid="ref1">[1] <xref ref-type="bibr" rid="ref2"/>-<xref ref-type="bibr" rid="ref3">[3] . The elemental composition of an inspected object is determined via spectrometry of gammas from the object bombarded by neutrons which are tagged by an alpha-detector built inside a neutron generator. This creates a task to find a quantitative indicator of the object identification quality (via elemental composition) as a function of basic parameters of the <inline-formula><tex-math notation="LaTeX">\gamma</tex-math></inline-formula>-detectors, such as their efficiency, energy and time resolutions, which in turn are generally defined by a scintillator of the detector. We have tried to solve the task for a set of four scintillators which are often used in the study of TN method, namely BGO, <inline-formula><tex-math notation="LaTeX">{\rm LaBr}_{3}</tex-math></inline-formula>, LYSO, NaI(Tl), whose basic parameters are well known <xref ref-type="bibr" rid="ref4">[4] <xref ref-type="bibr" rid="ref5"/><xref ref-type="bibr" rid="ref6"/>-<xref ref-type="bibr" rid="ref7">[7] .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Generators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neutrons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inspection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Belichenko, S. G</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bestaev, R. R</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">IEEE transactions on nuclear science</subfield><subfield code="d">New York, NY : IEEE, 1963</subfield><subfield code="g">63(2016), 2, Seite 524-527</subfield><subfield code="w">(DE-627)129547352</subfield><subfield code="w">(DE-600)218510-6</subfield><subfield code="w">(DE-576)014998238</subfield><subfield code="x">0018-9499</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">pages:524-527</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1109/TNS.2016.2521409</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7454825</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="h">524-527</subfield></datafield></record></collection>
|
score |
7.401636 |