Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory
The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consis...
Ausführliche Beschreibung
Autor*in: |
Kim, Do‐Min [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Rechteinformationen: |
Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal for numerical methods in engineering - Chichester [u.a.] : Wiley, 1969, 106(2016), 7, Seite 576-590 |
---|---|
Übergeordnetes Werk: |
volume:106 ; year:2016 ; number:7 ; pages:576-590 |
Links: |
---|
DOI / URN: |
10.1002/nme.5143 |
---|
Katalog-ID: |
OLC1975119096 |
---|
LEADER | 01000caa a2200265 4500 | ||
---|---|---|---|
001 | OLC1975119096 | ||
003 | DE-627 | ||
005 | 20220220112556.0 | ||
007 | tu | ||
008 | 160609s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1002/nme.5143 |2 doi | |
028 | 5 | 2 | |a PQ20160719 |
035 | |a (DE-627)OLC1975119096 | ||
035 | |a (DE-599)GBVOLC1975119096 | ||
035 | |a (PRQ)p1552-a5d46d866b5331eca851fb813aaa92c486a20466d11ea19e0ea843ae2e2c7c5d3 | ||
035 | |a (KEY)0065660720160000106000700576topologyoptimizationofthinwalledboxbeamstructuresb | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DNB |
084 | |a 50.03 |2 bkl | ||
100 | 1 | |a Kim, Do‐Min |e verfasserin |4 aut | |
245 | 1 | 0 | |a Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
520 | |a The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd. | ||
540 | |a Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. | ||
650 | 4 | |a thin‐walled box beam | |
650 | 4 | |a higher‐order beam theory | |
650 | 4 | |a topology optimization | |
650 | 4 | |a ground‐structure | |
700 | 1 | |a Kim, Suh In |4 oth | |
700 | 1 | |a Choi, Soomin |4 oth | |
700 | 1 | |a Jang, Gang‐Won |4 oth | |
700 | 1 | |a Kim, Yoon Young |4 oth | |
773 | 0 | 8 | |i Enthalten in |t International journal for numerical methods in engineering |d Chichester [u.a.] : Wiley, 1969 |g 106(2016), 7, Seite 576-590 |w (DE-627)129601217 |w (DE-600)241381-4 |w (DE-576)015094812 |x 0029-5981 |7 nnns |
773 | 1 | 8 | |g volume:106 |g year:2016 |g number:7 |g pages:576-590 |
856 | 4 | 1 | |u http://dx.doi.org/10.1002/nme.5143 |3 Volltext |
856 | 4 | 2 | |u http://onlinelibrary.wiley.com/doi/10.1002/nme.5143/abstract |
856 | 4 | 2 | |u http://search.proquest.com/docview/1781112543 |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 50.03 |q AVZ |
951 | |a AR | ||
952 | |d 106 |j 2016 |e 7 |h 576-590 |
author_variant |
d k dk |
---|---|
matchkey_str |
article:00295981:2016----::oooypiiainfhnaldobasrcuebsdnhh |
hierarchy_sort_str |
2016 |
bklnumber |
50.03 |
publishDate |
2016 |
allfields |
10.1002/nme.5143 doi PQ20160719 (DE-627)OLC1975119096 (DE-599)GBVOLC1975119096 (PRQ)p1552-a5d46d866b5331eca851fb813aaa92c486a20466d11ea19e0ea843ae2e2c7c5d3 (KEY)0065660720160000106000700576topologyoptimizationofthinwalledboxbeamstructuresb DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Kim, Do‐Min verfasserin aut Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. thin‐walled box beam higher‐order beam theory topology optimization ground‐structure Kim, Suh In oth Choi, Soomin oth Jang, Gang‐Won oth Kim, Yoon Young oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 106(2016), 7, Seite 576-590 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:106 year:2016 number:7 pages:576-590 http://dx.doi.org/10.1002/nme.5143 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.5143/abstract http://search.proquest.com/docview/1781112543 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 106 2016 7 576-590 |
spelling |
10.1002/nme.5143 doi PQ20160719 (DE-627)OLC1975119096 (DE-599)GBVOLC1975119096 (PRQ)p1552-a5d46d866b5331eca851fb813aaa92c486a20466d11ea19e0ea843ae2e2c7c5d3 (KEY)0065660720160000106000700576topologyoptimizationofthinwalledboxbeamstructuresb DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Kim, Do‐Min verfasserin aut Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. thin‐walled box beam higher‐order beam theory topology optimization ground‐structure Kim, Suh In oth Choi, Soomin oth Jang, Gang‐Won oth Kim, Yoon Young oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 106(2016), 7, Seite 576-590 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:106 year:2016 number:7 pages:576-590 http://dx.doi.org/10.1002/nme.5143 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.5143/abstract http://search.proquest.com/docview/1781112543 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 106 2016 7 576-590 |
allfields_unstemmed |
10.1002/nme.5143 doi PQ20160719 (DE-627)OLC1975119096 (DE-599)GBVOLC1975119096 (PRQ)p1552-a5d46d866b5331eca851fb813aaa92c486a20466d11ea19e0ea843ae2e2c7c5d3 (KEY)0065660720160000106000700576topologyoptimizationofthinwalledboxbeamstructuresb DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Kim, Do‐Min verfasserin aut Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. thin‐walled box beam higher‐order beam theory topology optimization ground‐structure Kim, Suh In oth Choi, Soomin oth Jang, Gang‐Won oth Kim, Yoon Young oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 106(2016), 7, Seite 576-590 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:106 year:2016 number:7 pages:576-590 http://dx.doi.org/10.1002/nme.5143 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.5143/abstract http://search.proquest.com/docview/1781112543 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 106 2016 7 576-590 |
allfieldsGer |
10.1002/nme.5143 doi PQ20160719 (DE-627)OLC1975119096 (DE-599)GBVOLC1975119096 (PRQ)p1552-a5d46d866b5331eca851fb813aaa92c486a20466d11ea19e0ea843ae2e2c7c5d3 (KEY)0065660720160000106000700576topologyoptimizationofthinwalledboxbeamstructuresb DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Kim, Do‐Min verfasserin aut Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. thin‐walled box beam higher‐order beam theory topology optimization ground‐structure Kim, Suh In oth Choi, Soomin oth Jang, Gang‐Won oth Kim, Yoon Young oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 106(2016), 7, Seite 576-590 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:106 year:2016 number:7 pages:576-590 http://dx.doi.org/10.1002/nme.5143 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.5143/abstract http://search.proquest.com/docview/1781112543 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 106 2016 7 576-590 |
allfieldsSound |
10.1002/nme.5143 doi PQ20160719 (DE-627)OLC1975119096 (DE-599)GBVOLC1975119096 (PRQ)p1552-a5d46d866b5331eca851fb813aaa92c486a20466d11ea19e0ea843ae2e2c7c5d3 (KEY)0065660720160000106000700576topologyoptimizationofthinwalledboxbeamstructuresb DE-627 ger DE-627 rakwb eng 510 DNB 50.03 bkl Kim, Do‐Min verfasserin aut Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd. Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd. thin‐walled box beam higher‐order beam theory topology optimization ground‐structure Kim, Suh In oth Choi, Soomin oth Jang, Gang‐Won oth Kim, Yoon Young oth Enthalten in International journal for numerical methods in engineering Chichester [u.a.] : Wiley, 1969 106(2016), 7, Seite 576-590 (DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 0029-5981 nnns volume:106 year:2016 number:7 pages:576-590 http://dx.doi.org/10.1002/nme.5143 Volltext http://onlinelibrary.wiley.com/doi/10.1002/nme.5143/abstract http://search.proquest.com/docview/1781112543 GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 50.03 AVZ AR 106 2016 7 576-590 |
language |
English |
source |
Enthalten in International journal for numerical methods in engineering 106(2016), 7, Seite 576-590 volume:106 year:2016 number:7 pages:576-590 |
sourceStr |
Enthalten in International journal for numerical methods in engineering 106(2016), 7, Seite 576-590 volume:106 year:2016 number:7 pages:576-590 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
thin‐walled box beam higher‐order beam theory topology optimization ground‐structure |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
International journal for numerical methods in engineering |
authorswithroles_txt_mv |
Kim, Do‐Min @@aut@@ Kim, Suh In @@oth@@ Choi, Soomin @@oth@@ Jang, Gang‐Won @@oth@@ Kim, Yoon Young @@oth@@ |
publishDateDaySort_date |
2016-01-01T00:00:00Z |
hierarchy_top_id |
129601217 |
dewey-sort |
3510 |
id |
OLC1975119096 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975119096</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220112556.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/nme.5143</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975119096</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975119096</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1552-a5d46d866b5331eca851fb813aaa92c486a20466d11ea19e0ea843ae2e2c7c5d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0065660720160000106000700576topologyoptimizationofthinwalledboxbeamstructuresb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Do‐Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thin‐walled box beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">higher‐order beam theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topology optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ground‐structure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Suh In</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choi, Soomin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Gang‐Won</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Yoon Young</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal for numerical methods in engineering</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1969</subfield><subfield code="g">106(2016), 7, Seite 576-590</subfield><subfield code="w">(DE-627)129601217</subfield><subfield code="w">(DE-600)241381-4</subfield><subfield code="w">(DE-576)015094812</subfield><subfield code="x">0029-5981</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:106</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:576-590</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/nme.5143</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/nme.5143/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1781112543</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">106</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="h">576-590</subfield></datafield></record></collection>
|
author |
Kim, Do‐Min |
spellingShingle |
Kim, Do‐Min ddc 510 bkl 50.03 misc thin‐walled box beam misc higher‐order beam theory misc topology optimization misc ground‐structure Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory |
authorStr |
Kim, Do‐Min |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129601217 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0029-5981 |
topic_title |
510 DNB 50.03 bkl Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory thin‐walled box beam higher‐order beam theory topology optimization ground‐structure |
topic |
ddc 510 bkl 50.03 misc thin‐walled box beam misc higher‐order beam theory misc topology optimization misc ground‐structure |
topic_unstemmed |
ddc 510 bkl 50.03 misc thin‐walled box beam misc higher‐order beam theory misc topology optimization misc ground‐structure |
topic_browse |
ddc 510 bkl 50.03 misc thin‐walled box beam misc higher‐order beam theory misc topology optimization misc ground‐structure |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
author2_variant |
s i k si sik s c sc g j gj y y k yy yyk |
hierarchy_parent_title |
International journal for numerical methods in engineering |
hierarchy_parent_id |
129601217 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
International journal for numerical methods in engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129601217 (DE-600)241381-4 (DE-576)015094812 |
title |
Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory |
ctrlnum |
(DE-627)OLC1975119096 (DE-599)GBVOLC1975119096 (PRQ)p1552-a5d46d866b5331eca851fb813aaa92c486a20466d11ea19e0ea843ae2e2c7c5d3 (KEY)0065660720160000106000700576topologyoptimizationofthinwalledboxbeamstructuresb |
title_full |
Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory |
author_sort |
Kim, Do‐Min |
journal |
International journal for numerical methods in engineering |
journalStr |
International journal for numerical methods in engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
576 |
author_browse |
Kim, Do‐Min |
container_volume |
106 |
class |
510 DNB 50.03 bkl |
format_se |
Aufsätze |
author-letter |
Kim, Do‐Min |
doi_str_mv |
10.1002/nme.5143 |
dewey-full |
510 |
title_sort |
topology optimization of thin‐walled box beam structures based on the higher‐order beam theory |
title_auth |
Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory |
abstract |
The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd. |
abstractGer |
The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd. |
abstract_unstemmed |
The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_70 |
container_issue |
7 |
title_short |
Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory |
url |
http://dx.doi.org/10.1002/nme.5143 http://onlinelibrary.wiley.com/doi/10.1002/nme.5143/abstract http://search.proquest.com/docview/1781112543 |
remote_bool |
false |
author2 |
Kim, Suh In Choi, Soomin Jang, Gang‐Won Kim, Yoon Young |
author2Str |
Kim, Suh In Choi, Soomin Jang, Gang‐Won Kim, Yoon Young |
ppnlink |
129601217 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1002/nme.5143 |
up_date |
2024-07-04T05:49:40.592Z |
_version_ |
1803626406842728448 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a2200265 4500</leader><controlfield tag="001">OLC1975119096</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220220112556.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">160609s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1002/nme.5143</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">PQ20160719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC1975119096</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVOLC1975119096</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PRQ)p1552-a5d46d866b5331eca851fb813aaa92c486a20466d11ea19e0ea843ae2e2c7c5d3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(KEY)0065660720160000106000700576topologyoptimizationofthinwalledboxbeamstructuresb</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DNB</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Do‐Min</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topology optimization of thin‐walled box beam structures based on the higher‐order beam theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The investigation aims to formulate ground‐structure based topology optimization approach by using a higher‐order beam theory suitable for thin‐walled box beam structures. While earlier studies use the Timoshenko or Euler beams to form a ground‐structure, they are not suitable for a structure consisting of thin‐walled closed beams. The higher‐order beam theory takes into an additional account sectional deformations of a thin‐walled box beam such as warping and distortion. Therefore, a method to connect ground beams at a joint and a technique to represent different joint connectivity states should be investigated for streamlined topology optimization. Several numerical case studies involving different loading and boundary conditions are considered to show the effectiveness of employing a higher‐order beam theory for the ground‐structure based topology optimization of thin‐walled box beam structures. Through the numerical results, this work shows significant difference between optimized beam layouts based on the Timoshenko beam theory and those based on a more accurate higher‐order beam theory for a structure consisting of thin‐walled box beams. Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Nutzungsrecht: Copyright © 2015 John Wiley & Sons, Ltd.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thin‐walled box beam</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">higher‐order beam theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">topology optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ground‐structure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Suh In</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choi, Soomin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jang, Gang‐Won</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Yoon Young</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal for numerical methods in engineering</subfield><subfield code="d">Chichester [u.a.] : Wiley, 1969</subfield><subfield code="g">106(2016), 7, Seite 576-590</subfield><subfield code="w">(DE-627)129601217</subfield><subfield code="w">(DE-600)241381-4</subfield><subfield code="w">(DE-576)015094812</subfield><subfield code="x">0029-5981</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:106</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">pages:576-590</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://dx.doi.org/10.1002/nme.5143</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://onlinelibrary.wiley.com/doi/10.1002/nme.5143/abstract</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://search.proquest.com/docview/1781112543</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.03</subfield><subfield code="q">AVZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">106</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="h">576-590</subfield></datafield></record></collection>
|
score |
7.399296 |